首页 > 其他分享 >拓端tecdat|R语言代码编写对回归模型进行协方差分析

拓端tecdat|R语言代码编写对回归模型进行协方差分析

时间:2022-11-29 15:34:36浏览次数:47  
标签:Temp 16 model.2 tecdat 协方差 拓端 Data Species ###


目录

 

​​怎么做测试​​

​​协方差分析​​

​​拟合线的简单图解​​

​​模型的p值和R平方​​

​​检查模型的假设​​

​​具有三类和II型平方和的协方差示例分析​​

​​协方差分析​​

​​拟合线的简单图解​​

​​组合模型的p值和R平方​​

​​检查模型的假设​​


怎么做测试

具有两个类别和II型平方和的协方差示例的分析

本示例使用II型平方和 。参数估计值在R中的计算方式不同, 

 

Data = read.table(textConnection(Input),header=TRUE)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合

 

 

 

plot(x   = Data$Temp, 
y = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")

legend('bottomright',
legend = levels(Data$Species),
col = 1:2,
cex = 1,
pch = 16)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_02

 

 

 

协方差分析

 

Anova Table (Type II tests)



Sum Sq Df F value Pr(>F)

Temp 4376.1 1 1388.839 < 2.2e-16 ***

Species 598.0 1 189.789 9.907e-14 ***

Temp:Species 4.3 1 1.357 0.2542



### Interaction is not significant, so the slope across groups

### is not different.





model.2 = lm (Pulse ~ Temp + Species,
data = Data)

library(car)

Anova(model.2, type="II")



Anova Table (Type II tests)



Sum Sq Df F value Pr(>F)

Temp 4376.1 1 1371.4 < 2.2e-16 ***

Species 598.0 1 187.4 6.272e-14 ***



### The category variable (Species) is significant,

### so the intercepts among groups are different





Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.21091 2.55094 -2.827 0.00858 **

Temp 3.60275 0.09729 37.032 < 2e-16 ***

Speciesniv -10.06529 0.73526 -13.689 6.27e-14 ***




### but the calculated results will be identical.

### The slope estimate is the same.

### The intercept for species 1 (ex) is (intercept).

### The intercept for species 2 (niv) is (intercept) + Speciesniv.

### This is determined from the contrast coding of the Species

### variable shown below, and the fact that Speciesniv is shown in

### coefficient table above.





niv

ex 0

niv 1

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_03

 

 

拟合线的简单图解

 

plot(x   = Data$Temp, 
y = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_04

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_05

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_06

模型的p值和R平方

 

 

Multiple R-squared:  0.9896,  Adjusted R-squared:  0.9888

F-statistic: 1331 on 2 and 28 DF, p-value: < 2.2e-16

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_07

 

 

检查模型的假设

 

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_08

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_09

 

线性模型中残差的直方图。这些残差的分布应近似正态。

 

 

 

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_10

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_11

残差与预测值的关系图。残差应无偏且均等。 

 

 

### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_12

 

具有三类和II型平方和的协方差示例分析

本示例使用II型平方和,并考虑具有三个组的情况。 

### --------------------------------------------------------------
### Analysis of covariance, hypothetical data
### --------------------------------------------------------------


Data = read.table(textConnection(Input),header=TRUE)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_13

 

 

 

 

plot(x   = Data$Temp, 
y = Data$Pulse,
col = Data$Species,
pch = 16,
xlab = "Temperature",
ylab = "Pulse")

legend('bottomright',
legend = levels(Data$Species),
col = 1:3,
cex = 1,
pch = 16)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_14

 

 

 

协方差分析

 

options(contrasts = c("contr.treatment", "contr.poly"))

### These are the default contrasts in R


Anova(model.1, type="II")



Sum Sq Df F value Pr(>F)

Temp 7026.0 1 2452.4187 <2e-16 ***

Species 7835.7 2 1367.5377 <2e-16 ***

Temp:Species 5.2 2 0.9126 0.4093



### Interaction is not significant, so the slope among groups

### is not different.







Anova(model.2, type="II")



Sum Sq Df F value Pr(>F)

Temp 7026.0 1 2462.2 < 2.2e-16 ***

Species 7835.7 2 1373.0 < 2.2e-16 ***

Residuals 125.6 44



### The category variable (Species) is significant,

### so the intercepts among groups are different





summary(model.2)



Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.35729 1.90713 -3.333 0.00175 **

Temp 3.56961 0.07194 49.621 < 2e-16 ***

Speciesfake 19.81429 0.66333 29.871 < 2e-16 ***

Speciesniv -10.18571 0.66333 -15.355 < 2e-16 ***



### The slope estimate is the Temp coefficient.

### The intercept for species 1 (ex) is (intercept).

### The intercept for species 2 (fake) is (intercept) + Speciesfake.

### The intercept for species 3 (niv) is (intercept) + Speciesniv.

### This is determined from the contrast coding of the Species

### variable shown below.





contrasts(Data$Species)



fake niv

ex 0 0

fake 1 0

niv 0 1

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_15

 

拟合线的简单图解

 

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_16

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_17

 

组合模型的p值和R平方

 

 

Multiple R-squared:  0.9919,  Adjusted R-squared:  0.9913

F-statistic: 1791 on 3 and 44 DF, p-value: < 2.2e-16

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_18

 

 

 

检查模型的假设

hist(residuals(model.2), 
col="darkgray")

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_19

 

拓端tecdat|R语言代码编写对回归模型进行协方差分析_协方差_20

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_21

线性模型中残差的直方图。这些残差的分布应近似正态。

 

 

plot(fitted(model.2), 
residuals(model.2))

拓端tecdat|R语言代码编写对回归模型进行协方差分析_数据_22

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_23

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_24

 

残差与预测值的关系图。残差应无偏且均等。 

 

 

### additional model checking plots with: plot(model.2)
### alternative: library(FSA); residPlot(model.2)

拓端tecdat|R语言代码编写对回归模型进行协方差分析_拟合_25

 



标签:Temp,16,model.2,tecdat,协方差,拓端,Data,Species,###
From: https://blog.51cto.com/u_14293657/5895241

相关文章