首页 > 其他分享 >实验五:全连接神经网络手写数字识别实验

实验五:全连接神经网络手写数字识别实验

时间:2022-11-26 09:00:33浏览次数:37  
标签:Loss plt Train 神经网络 train 实验 test 手写 data

实验五:全连接神经网络手写数字识别实验

【实验目的】
  1. 理解神经网络原理,掌握神经网络前向推理和后向传播方法;
  2. 掌握使用pytorch框架训练和推理全连接神经网络模型的编程实现方法。
【实验内容】

​ 使用pytorch框架,设计一个全连接神经网络,实现Mnist手写数字字符集的训练与识别。

【实验报告要求】
  1. 修改神经网络结构,改变层数观察层数对训练和检测时间,准确度等参数的影响;
  2. 修改神经网络的学习率,观察对训练和检测效果的影响;
  3. 修改神经网络结构,增强或减少神经元的数量,观察对训练的检测效果的影响。

实验内容

  1. 导入相关库:
# 导入相关库
import torch
import torchvision
from torch.utils.data import DataLoader
  1. 准备数据集:
# 准备数据集
n_epochs = 3
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
random_seed = 1
torch.manual_seed(random_seed)

# 下载数据集
train_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=True, download=True,  # 下载数据到data文件夹
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_train, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    torchvision.datasets.MNIST('./data/', train=False, download=True,
                               transform=torchvision.transforms.Compose([
                                   torchvision.transforms.ToTensor(),
                                   torchvision.transforms.Normalize(
                                       (0.1307,), (0.3081,))
                               ])),
    batch_size=batch_size_test, shuffle=True)
  1. 查看下载的一些图片:
import matplotlib.pyplot as plt

fig = plt.figure()
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Ground Truth: {}".format(example_targets[i]))
    plt.xticks([])
    plt.yticks([])
plt.show()

  1. 构建网络:
# 构建网络
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x)
# 初始化网络和优化器
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
# 构建模型训练
train_losses = []
train_counter = []
test_losses = []
test_counter = [i*len(train_loader.dataset) for i in range(n_epochs + 1)]
  1. 训练函数:
# 运行一次测试循环,看看仅使用随机初始化的网络参数可以获得多大的精度/损失
def train(epoch):
    network.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = network(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))
            train_losses.append(loss.item())
            train_counter.append(
                (batch_idx*64) + ((epoch-1)*len(train_loader.dataset)))
            torch.save(network.state_dict(), './model.pth')
            torch.save(optimizer.state_dict(), './optimizer.pth')

train(1)
Train Epoch: 1 [1920/60000 (3%)]	Loss: 2.260613
Train Epoch: 1 [2560/60000 (4%)]	Loss: 2.220656
Train Epoch: 1 [3200/60000 (5%)]	Loss: 2.184241
Train Epoch: 1 [3840/60000 (6%)]	Loss: 2.265190
Train Epoch: 1 [4480/60000 (7%)]	Loss: 2.108070
Train Epoch: 1 [5120/60000 (9%)]	Loss: 2.060574
Train Epoch: 1 [5760/60000 (10%)]	Loss: 1.918511
Train Epoch: 1 [6400/60000 (11%)]	Loss: 1.947299
...
# 手动测试test函数 输出精确值和损失值
def test():
    network.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            output = network(data)
            test_loss += F.nll_loss(output, target, size_average=False).item()
            pred = output.data.max(1, keepdim=True)[1]
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_loader.dataset)
    test_losses.append(test_loss)
    print('\nTest set: 损失值: {:.4f}, 精确值: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

test()
Test set: 损失值: 0.1860, 精确值: 9464/10000 (95%)
# 现在进入测试循环。在这里,我们总结了测试损失,并跟踪正确分类的数字来计算网络的精度
for epoch in range(1, n_epochs + 1):
    train(epoch)
    test()

测试过程:

Train Epoch: 3 [45440/60000 (76%)]	Loss: 0.171279
Train Epoch: 3 [46080/60000 (77%)]	Loss: 0.238022
Train Epoch: 3 [46720/60000 (78%)]	Loss: 0.211611
Train Epoch: 3 [47360/60000 (79%)]	Loss: 0.205421
Train Epoch: 3 [48000/60000 (80%)]	Loss: 0.278859
Train Epoch: 3 [48640/60000 (81%)]	Loss: 0.273572
Train Epoch: 3 [49280/60000 (82%)]	Loss: 0.273384
Train Epoch: 3 [49920/60000 (83%)]	Loss: 0.189791
...
  1. 绘制训练曲线:
# 评估模型的性能
# 绘制训练曲线
fig = plt.figure()
plt.plot(train_counter, train_losses, color='blue')
plt.scatter(test_counter, test_losses, color='red')
plt.legend(['Train Loss', 'Test Loss'], loc='upper right')
plt.xlabel('number of training examples seen')
plt.ylabel('negative log likelihood loss')
plt.show()

  1. 查看训练结果:
# 查看一部分预测结果
examples = enumerate(test_loader)
batch_idx, (example_data, example_targets) = next(examples)
with torch.no_grad():
    output = network(example_data)
# fig = plt.figure()
for i in range(6):
    plt.subplot(2,3,i+1)
    plt.tight_layout()
    plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
    plt.title("Prediction: {}".format(
        output.data.max(1, keepdim=True)[1][i].item()))
    plt.xticks([])
    plt.yticks([])
plt.show()

通过测试结果知预测的结果基本正确。

标签:Loss,plt,Train,神经网络,train,实验,test,手写,data
From: https://www.cnblogs.com/lm20010928/p/16926881.html

相关文章

  • 实验五
    1#pragmaonce2#include<iostream>3usingnamespacestd;4classMachinePets5{6public:7MachinePets(conststrings);8stringget_nickn......
  • 实验7:基于REST API的SDN北向应用实践
    实验7:基于RESTAPI的SDN北向应用实践一、实验目的能够编写程序调用OpenDaylightRESTAPI实现特定网络功能;能够编写程序调用RyuRESTAPI实现特定网络功能。二、实验......
  • 实验五
    Task4:pets.hpp#pragmaocne#include<iostream>#include<string>usingnamespacestd;classMachinePets{stringnickname;public:MachinePets......
  • 实验五
    1.task4.hpp#pragmaonce#include<iostream>#include<string>usingnamespacestd;classMachinePets{public:MachinePets(conststrings):nickname(s){}......
  • 【汇编语言】实验3 编程、编译、链接、跟踪
    【汇编语言】实验3编程、编译、链接、跟踪实验内容编写程序DEBUG程序查看初始状态和指令可以发现CS=DS+10H依次执行查看PSP内容首先回顾一下PSP是什么所以我们查看SA:0......
  • 【汇编语言】实验2 用机器指令和汇编指令编程
    ​【汇编语言】实验2用机器指令和汇编指令编程文章目录​​【汇编语言】实验2用机器指令和汇编指令编程​​​​一、预备知识,debug的使用​​​​debug中段寄存器使用​​......
  • 【汇编语言】实验1 查看CPU和内存,用机器指令和汇编指令编程
    ​【汇编语言】实验1查看CPU和内存,用机器指令和汇编指令编程文章目录​​【汇编语言】实验1查看CPU和内存,用机器指令和汇编指令编程​​​​一、配置环境​​​​二、熟悉......
  • 【视频】Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析|数据分
    全文下载链接:http://tecdat.cn/?p=23544 在本文中,长短期记忆网络——通常称为“LSTM”——是一种特殊的RNN递归神经网络,能够学习长期依赖关系。最近我们被客户要求撰写......
  • Python第十章实验
    实例一:创建并打开记录蚂蚁庄园动态的文件实验代码:print("\n","="*10,"蚂蚁庄园动态","="*10)file=open('message.txt','w')print("\n即将显示……\n")实验结果:......
  • 实验五
     Pets.h#pragmaonce#include<iostream>#include<string>usingnamespacestd;classMachinePets{public:MachinePets(conststring&s=""):nickname(s)......