首页 > 其他分享 >Decorator设计模式

Decorator设计模式

时间:2022-11-22 14:06:12浏览次数:33  
标签:... int void virtual char 设计模式 public Decorator


Decorator

动机(Motivation)

  • 在某些情况下我们可能会“过度地使用继承来扩展对象的功能”,由于继承为类型引入的静态特质,使得这种扩展方式缺乏灵活性;
    并且随着子类的增多(扩展功能的增多),各种子类的组合(扩展功能的组合)会导致更多子类的膨胀。
  • 如何使“对象功能的扩展”能够根据需要来动态地实现?同时避免“扩展功能的增多”带来的子类膨胀问题?从而使得任何“功能扩展变化”所导致的影响将为最低?

模式定义

动态(组合)地给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少子类个数)。
——《设计模式》GoF

代码分析

不好的设计

Decorator设计模式_网络流

//业务操作
class Stream{
public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;

virtual ~Stream(){}
};

//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}

};

class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}

};

class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}

};

//扩展操作
class CryptoFileStream :public FileStream{
public:
virtual char Read(int number){

//额外的加密操作...
FileStream::Read(number);//读文件流

}
virtual void Seek(int position){
//额外的加密操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
}
};

class CryptoNetworkStream : public NetworkStream{
public:
virtual char Read(int number){

//额外的加密操作...
NetworkStream::Read(number);//读网络流
}
virtual void Seek(int position){
//额外的加密操作...
NetworkStream::Seek(position);//定位网络流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
NetworkStream::Write(data);//写网络流
//额外的加密操作...
}
};

class CryptoMemoryStream : public MemoryStream{
public:
virtual char Read(int number){

//额外的加密操作...
MemoryStream::Read(number);//读内存流
}
virtual void Seek(int position){
//额外的加密操作...
MemoryStream::Seek(position);//定位内存流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
MemoryStream::Write(data);//写内存流
//额外的加密操作...
}
};

class BufferedFileStream : public FileStream{
//...
};

class BufferedNetworkStream : public NetworkStream{
//...
};

class BufferedMemoryStream : public MemoryStream{
//...
};




class CryptoBufferedFileStream :public FileStream{
public:
virtual char Read(int number){

//额外的加密操作...
//额外的缓冲操作...
FileStream::Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Seek(position);//定位文件流
//额外的加密操作...
//额外的缓冲操作...
}
virtual void Write(byte data){
//额外的加密操作...
//额外的缓冲操作...
FileStream::Write(data);//写文件流
//额外的加密操作...
//额外的缓冲操作...
}
};



void Process(){

//编译时装配
CryptoFileStream *fs1 = new CryptoFileStream();

BufferedFileStream *fs2 = new BufferedFileStream();

CryptoBufferedFileStream *fs3 =new CryptoBufferedFileStream();

}

较好的设计

//业务操作
class Stream{

public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;

virtual ~Stream(){}
};

//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}

};

class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}

};

class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}

};

//扩展操作

// 三个子类变为一个子类,用组合代替继承
class CryptoStream: public Stream {

Stream* stream;//...

public:
CryptoStream(Stream* stm):stream(stm){

}


virtual char Read(int number){

//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};



class BufferedStream : public Stream{

Stream* stream;//...

public:
BufferedStream(Stream* stm):stream(stm){

}
//...
};





void Process(){

//运行时装配
FileStream* s1=new FileStream();
CryptoStream* s2=new CryptoStream(s1);

BufferedStream* s3=new BufferedStream(s1);

BufferedStream* s4=new BufferedStream(s2);



}

decorator设计

Decorator设计模式_网络流_02

//业务操作
class Stream{

public:
virtual char Read(int number)=0;
virtual void Seek(int position)=0;
virtual void Write(char data)=0;

virtual ~Stream(){}
};

//主体类
class FileStream: public Stream{
public:
virtual char Read(int number){
//读文件流
}
virtual void Seek(int position){
//定位文件流
}
virtual void Write(char data){
//写文件流
}

};

class NetworkStream :public Stream{
public:
virtual char Read(int number){
//读网络流
}
virtual void Seek(int position){
//定位网络流
}
virtual void Write(char data){
//写网络流
}

};

class MemoryStream :public Stream{
public:
virtual char Read(int number){
//读内存流
}
virtual void Seek(int position){
//定位内存流
}
virtual void Write(char data){
//写内存流
}

};

//扩展操作

// 由于两个子类有相同的成员Stream*,所以这个成员要往上提
DecoratorStream: public Stream{
protected:
Stream* stream;//...

DecoratorStream(Stream * stm):stream(stm){

}

};

class CryptoStream: public DecoratorStream {


public:
CryptoStream(Stream* stm):DecoratorStream(stm){

}


virtual char Read(int number){

//额外的加密操作...
stream->Read(number);//读文件流
}
virtual void Seek(int position){
//额外的加密操作...
stream::Seek(position);//定位文件流
//额外的加密操作...
}
virtual void Write(byte data){
//额外的加密操作...
stream::Write(data);//写文件流
//额外的加密操作...
}
};



class BufferedStream : public DecoratorStream{

Stream* stream;//...

public:
BufferedStream(Stream* stm):DecoratorStream(stm){

}
//...
};




void Process(){

//运行时装配
FileStream* s1=new FileStream();

CryptoStream* s2=new CryptoStream(s1);

BufferedStream* s3=new BufferedStream(s1);

BufferedStream* s4=new BufferedStream(s2);



}

Structure

Decorator设计模式_Decorator_03

要点总结

  • 通过采用组合而非继承的手法, Decorator模式实现了在运行时动态扩展对象功能的能力,而且可以根据需要扩展多个功能。
    避免了使用继承带来的“灵活性差”和“多子类衍生问题”。
  • Decorator类在接口上表现为is-a Component的继承关系,即Decorator类继承了Component类所具有的接口。既有继承,又有组合,多数情况下是decorator设计模式
    但在实现上又表现为has-a Component的组合关系,即Decorator类又使用了另外一个Component类。
  • Decorator模式的目的并非解决“多子类衍生的多继承”问题,Decorator模式应用的要点在于解决“主体类在多个方向上的扩展功能”——是为“装饰”的含义。


标签:...,int,void,virtual,char,设计模式,public,Decorator
From: https://blog.51cto.com/u_13875041/5877892

相关文章

  • Strategy设计模式
    程序的复用性是二进制层面的复用,而不是代码的复制粘贴Strategy动机(Motivation)在软件构建过程中,某些对象使用的算法可能多种多样,经常改变,如果将这些算法都编码到对象中,将会使......
  • Android设计模式系列(7)--SDK源码之命令模式
    命令模式,在.net,java平台的事件机制用的非常多,几乎每天都与之打交道。android中对我印象最深的就是多线程多进程的环境,所以必然大量使用到Runbable,Thread,其实用的就是最......
  • Android设计模式系列(1)--SDK源码之组合模式
    Android设计模式系列(1)–SDK源码之组合模式Android中对组合模式的应用,可谓是泛滥成粥,随处可见,那就是View和ViewGroup类的使用。在androidUI设计,几乎所有的widget和布局类......
  • 设计模式
    设计模式共有23中设计模式,Gof23。GoF23一种思维,一种态度,一种进步 创建型模式:(描述怎么创建一个对象)单例模式、工厂模式、抽象工厂模式、建造者模式、原型......
  • js设计模式=封装
    js封装案例【1】<script>varBook=function(num){varnum;//类私有变量varname;//类私有变量functioncheck(){};//类私有方法this.checkName=functio......
  • Java设计模式 - 24种
    设计模式的七大原则   开闭原则:对扩展开放、对修改关闭。   单一指责原则:一个类只做一件事。   依赖倒转原则:类似于ioc,采用接口编程。   迪米特原则:高内聚......
  • Java设计模式--单例模式
    单例模式分三种:懒汉式单例、饿汉式单例、登记式单例三种。单例模式有一下特点:1、单例类只能有一个实例。2、单例类必须自己自己创建自己的唯一实例。3、单例类必须给所有其......
  • 设计模式的基本原则
    设计模式设计模式的世界丰富多彩,比如生产一个个「产品」的工厂模式,衔接两个不相关接口的适配器模式,用不同的方式做同一件事的策略模式,构建步骤稳定、根据构建过程的不同配置......
  • Laravel中用到的设计模式
    1:工厂模式 Auth::user()此处Auth这个类就是工厂中的方法,Auth是注册树中的别名。好处:类似于函数的封装,使对象有一个统一的生成(实例化)入口。当我们对象所对应的类的类名发......
  • 设计模式--创建型模式
    设计模式--创建型模式创建型模式,共五种:工厂方法模式(一个工厂类ReturnNew子类)、抽象工厂模式(一个厂一个子类)、单例模式(恶汉,懒汉)、建造者模式(组合)、原型模式(Cloneable浅......