题目:
给定一个链表的头节点 head ,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。如果 pos 是 -1,则在该链表中没有环。
注意:pos 不作为参数进行传递,仅仅是为了标识链表的实际情况。不允许修改链表。
示例:
输入:head = [3,2,0,-4], pos = 1 输出:返回索引为 1 的链表节点 解释:链表中有一个环,其尾部连接到第二个节点。
思路:
解决此题需明确两件事:
(1)判断链表是否环
可以给定两个指针,慢指针每走一步,快指针走两步,如果有环,快指针一定会追上慢指针,两者相遇即有环。
(2)如果有环,如何找到这个环的入口
假设从头结点到环形入口节点 的节点数为x。 环形入口节点到 fast指针与slow指针相遇节点 节点数为y。 从相遇节点 再到环形入口节点节点数为 z。 如图所示:
那么相遇时: slow指针走过的节点数为: x + y
, fast指针走过的节点数:x + y + n (y + z)
,n为fast指针在环内走了n圈才遇到slow指针, (y+z)为 一圈内节点的个数A。
因为fast指针是一步走两个节点,slow指针一步走一个节点, 所以 fast指针走过的节点数 = slow指针走过的节点数 * 2:(x + y) * 2 = x + y + n (y + z)
两边消掉一个(x+y): x + y = n (y + z)
因为要找环形的入口,那么要求的是x,因为x表示 头结点到 环形入口节点的的距离。
所以要求x ,将x单独放在左面:x = n (y + z) - y
,
再从n(y+z)中提出一个 (y+z)来,整理公式之后为如下公式:x = (n - 1) (y + z) + z。
注意这里n一定是大于等于1的,因为 fast指针至少要多走一圈才能相遇slow指针。
当 n为1的时候,公式就化解为 x = z
,
这就意味着,从头结点出发一个指针,从相遇节点 也出发一个指针,这两个指针每次只走一个节点, 那么当这两个指针相遇的时候就是环形入口的节点。
也就是在相遇节点处,定义一个指针index1,在头结点处定一个指针index2。让index1和index2同时移动,每次移动一个节点, 那么他们相遇的地方就是 环形入口的节点。
当n大于1时,就是fast指针在环形转n圈之后才遇到 slow指针。
其实这种情况和n为1的时候 效果是一样的,一样可以通过这个方法找到 环形的入口节点,只不过,index1 指针在环里 多转了(n-1)圈,然后再遇到index2,相遇点依然是环形的入口节点。
首先slow进环的时候,fast一定是先进环来了。如果slow进环入口,fast也在环入口,那么把这个环展开成直线,就是如下图的样子:
可以看出如果slow 和 fast同时在环入口开始走,一定会在环入口3相遇,slow走了一圈,fast走了两圈。
重点来了,slow进环的时候,fast一定是在环的任意一个位置,如图:
那么fast指针走到环入口3的时候,已经走了k + n 个节点,slow相应的应该走了(k + n) / 2 个节点。因为k是小于n的(图中可以看出),所以(k + n) / 2 一定小于n。也就是说slow一定没有走到环入口3,而fast已经到环入口3了。这说明在slow开始走的那一环已经和fast相遇了。
public class Solution { public ListNode detectCycle(ListNode head) { ListNode fast=head; ListNode slow=head; while(fast!=null&&fast.next!=null){//fast在前 slow=slow.next; fast=fast.next.next; if(slow==fast){//有环 ListNode node1=fast; ListNode node2=head; while(node1!=node2){//环入口 node1=node1.next; node2=node2.next; } return node1; } } return null; } }
标签:力扣,slow,142,fast,链表,入口,节点,指针 From: https://www.cnblogs.com/cjhtxdy/p/16908778.html