迎接仪式
题目描述
LHX 教主要来 X 市指导 OI 学习工作了。为了迎接教主,在一条道路旁,一群“Orz 教主 er”穿着文化衫站在道路两旁迎接教主,每件文化衫上都印着大字。一旁的 Orzer 依次摆出“欢迎欢迎欢迎欢迎……”的大字,但是领队突然发现,另一旁穿着“教”和“主”字文化衫的 Orzer 却不太和谐。
为了简单描述这个不和谐的队列,我们用 j
替代“教”,z
替代“主”。而一个 j
与 z
组成的序列则可以描述当前的队列。为了让教主看得尽量舒服,你必须调整队列,使得 jz
子串尽量多。每次调整你可以交换任意位置上的两个人,也就是序列中任意位置上的两个字母。而因为教主马上就来了,时间仅够最多做 \(K\) 次调整(当然可以调整不满 \(K\) 次),所以这个问题交给了你。
输入格式
第一行,两个正整数 \(N, K\),分别表示序列长度与最多交换次数。
第二行,一个长度为 \(N\) 的字符串,字符串仅由字母 j
与字母 z
组成,描述了这个序列。
输出格式
一个非负整数,为调整最多 \(K\) 次后最后最多能出现多少个 jz
子串。
样例 #1
样例输入 #1
5 2
zzzjj
样例输出 #1
2
提示
【样例说明】
第 \(1\) 次交换位置 \(1\) 上的 z
和位置 \(4\) 上的 j
,变为 jzzzj
;
第 \(2\) 次交换位置 \(4\) 上的 z
和位置 \(5\) 上的 j
,变为 jzzjz
。
最后的串有 \(2\) 个 jz
子串。
【数据规模与约定】
对于 \(10 \%\) 的数据,有 \(N \le 10\);
对于 \(30 \%\) 的数据,有 \(K \le 10\);
对于 \(40 \%\) 的数据,有 \(N \le 50\);
对于 \(100 \%\) 的数据,有 \(1 \le N \le 500\),\(1 \le K \le 100\)。
题解:
这题的状态是非常难想出来的除非看题解
主要思路是把交换变为改变记录下\('j','z'\)改变的次数
这样做的好处是可以不用考虑当前\('j','z'\)是和哪个位置的\('j','z'\)交换的(可前可后)
就可以更加方便的进行dp(线性的往后推)
因为要考虑当前\('j'/'z'\)的贡献(即能不能和前面的字母组成\(jz\))所以还有记下当前状态下末尾字符是\('j'/'z'\)
因为一次交换\('j','z'\)都会改变一次所以到最后\('j','z'\)的改变次数相同才是合法状态
状态\(:f[i][j][k][0/1]\)表示前\(i\)个字符中交换\(j\)次\('j'\)和\(k\)次\('z'\)且第\('i'\)个字符改为\('j'/'z'\)所能得到的最多\(jz\)的数量。
状态出来了转移就很好写了
std:
#include<bits/stdc++.h>
using namespace std;
#define re register
#define max_(x,y) x>y?x:y
const int N = 501;
int n,m,f[2][N][N][2];
char s[N];
int main()
{
scanf("%d%d%s",&n,&m,s+1);
memset(f,128,sizeof f);
f[0][0][0][1] = 0;
for(re int i = 1;i <= n;i++)
for(re int j = 0;j <= m;j++)
for(re int k = 0;k <= m;k++)
if(s[i] == 'j')
{
f[i&1][j][k][0] = max_(f[(i&1)^1][j][k][0],f[(i&1)^1][j][k][1]);
if(j)f[i&1][j][k][1] = max_(f[(i&1)^1][j-1][k][0]+1,f[(i&1)^1][j-1][k][1]);
}
else
{
if(k)f[i&1][j][k][0] = max_(f[(i&1)^1][j][k-1][0],f[(i&1)^1][j][k-1][1]);
f[i&1][j][k][1] = max_(f[(i&1)^1][j][k][1],f[(i&1)^1][j][k][0]+1);
}
int ans = 0;
for(re int i = 1;i <= m;i++)ans = max(ans,max_(f[n&1][i][i][1],f[n&1][i][i][0]));
printf("%d",ans);
return 0;
}
标签:状态,le,jz,int,样例,交换,教主,设计,dp
From: https://www.cnblogs.com/AC7-/p/16891177.html