首页 > 其他分享 >face_recognition实现人脸相似度比较

face_recognition实现人脸相似度比较

时间:2022-11-10 15:04:23浏览次数:54  
标签:encoding image locations face 人脸 file recognition


face_recognition

face_recognition 是github上一个非常有名气的人脸识别开源工具包,我们可以通过以下指令安装到python环境内

$ pip install face_recognition

加载人脸图片

image = face_recognition.load_image_file(src)

face_recognition实现人脸相似度比较_计算机视觉

获取图片人脸定位[(top,right,bottom,left )]

face_locations = face_recognition.face_locations(image)
img = image[face_locations[0][0]:face_locations[0][2],face_locations[0][3]:face_locations[0][1]]

face_recognition实现人脸相似度比较_opencv_02

对人脸图片进行编码

face_encoding = face_recognition.face_encodings(image, face_locations)[0]

face_recognition实现人脸相似度比较_opencv_03

说明:给定想要识别的人脸的图片并对其进行编码(每个人只需要一张),并将这些不同的人脸编码构建成一个列表。编码其实就是将人脸图片映射成一个128维的特征向量。

简单判断人脸相似度,内置函数

def theSamePerson(one_pic,two_pic):
'''
给定两张图片,判断是否是同一个人
'''
chenglong = face_recognition.load_image_file(one_pic)
unknown_image = face_recognition.load_image_file(two_pic)
biden_encoding = face_recognition.face_encodings(chenglong)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([biden_encoding], unknown_encoding,tolerance=0.35)
print('results: ',results)
return results[0]

face_recognition实现人脸相似度比较_ide_04

自定义余弦相似度比较人脸相似度

def getFaceEncoding(src):
image = face_recognition.load_image_file(src)
face_locations = face_recognition.face_locations(image)
img_ = image[face_locations[0][0]:face_locations[0][2],face_locations[0][3]:face_locations[0][1]]#人脸范围
face_encoding = face_recognition.face_encodings(image, face_locations)[0]
return face_encoding
def simcos(A,B):
A=np.array(A)
B=np.array(B)
dist = np.linalg.norm(A - B) # 二范数
sim = 1.0 / (1.0 + dist) #
return sim
def main():
src1,src2 = sys.argv[1],sys.argv[2]#两张图片路径
xl1=getFaceEncoding(src1)
xl2=getFaceEncoding(src2)
face_distances = face_recognition.face_distance([xl1], xl2)
value=simcos(xl1,xl2)
if value>0.75:
print(True)
else:
print(False)

完整代码

import face_recognition
import numpy as np
import sys
import cv2

def display(img):#查看图片
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()
def getFaceEncoding(src):
image = face_recognition.load_image_file(src)
face_locations = face_recognition.face_locations(image)
img_ = image[face_locations[0][0]:face_locations[0][2],face_locations[0][3]:face_locations[0][1]]
img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)
#display(img_)
face_encoding = face_recognition.face_encodings(image, face_locations)[0]
return face_encoding
def simcos(A,B):
A=np.array(A)
B=np.array(B)
dist = np.linalg.norm(A - B) # 二范数
sim = 1.0 / (1.0 + dist) #
return sim

def theSamePerson(one_pic,two_pic):
'''
给定两张图片,判断是否是同一个人
'''
chenglong = face_recognition.load_image_file(one_pic)
unknown_image = face_recognition.load_image_file(two_pic)
biden_encoding = face_recognition.face_encodings(chenglong)[0]
unknown_encoding = face_recognition.face_encodings(unknown_image)[0]
results = face_recognition.compare_faces([biden_encoding], unknown_encoding,tolerance=0.35)
print('results: ',results)
return results[0]

def main():
src1,src2 = sys.argv[1],sys.argv[2]
#theSamePerson(src1,src2)
xl1=getFaceEncoding(src1)
xl2=getFaceEncoding(src2)
face_distances = face_recognition.face_distance([xl1], xl2)
value=simcos(xl1,xl2)
if value>0.75:
print(True)
else:
print(False)

main()

face_recognition实现人脸相似度比较_python_05


face_recognition实现人脸相似度比较_opencv_06


face_recognition实现人脸相似度比较_计算机视觉_07

说明:以上图片全部为stylegan生成的虚假图片。

延申

可以用作门禁系统或人脸登录方面

import face_recognition
import os
import numpy as np

cache_dir = "output/cache"


def save_file(vector,name):
root = os.path.dirname(name)
if(not os.path.exists(root)):
os.mkdir(root)
np.save(name,vector)


def getFaceEncoding(src):
name = "output/cache/" +os.path.basename(src).split(".")[0]
image = face_recognition.load_image_file(src)
face_locations = face_recognition.face_locations(image)
face_encoding = face_recognition.face_encodings(image, face_locations)[0]
save_file(face_encoding,name)
return face_encoding

def theSamePerson(pic,cache_dir):
'''
给定两张图片,判断是否是同一个人
'''
pic1 = face_recognition.load_image_file(pic)
face_locations = face_recognition.face_locations(pic1)
face_encoding = face_recognition.face_encodings(pic1, face_locations)[0]

all_meber = os.listdir(cache_dir)
for meber in all_meber:
current_name = meber.split(".")[0]
current_file = cache_dir + "/" + meber
current_meber_encoding = np.load(current_file)
results = face_recognition.compare_faces([face_encoding],current_meber_encoding,tolerance=0.35)
if (results == [True]):
return current_name

return "not exists!"



def main():
#file = "output/jingjing.png"
#getFaceEncoding(file)
file1 = "output/image0000-target.png"
name = theSamePerson(file1,cache_dir)
print ("This meber is ",name)


main()

face_recognition实现人脸相似度比较_ide_08


思路:我们将人脸编码储存起来,建立人脸信息库。
随后我们给定一张图片进行测试。


标签:encoding,image,locations,face,人脸,file,recognition
From: https://blog.51cto.com/u_15872074/5841638

相关文章