首页 > 系统相关 >罗盘传感器 芯片ak09911 linux 驱动

罗盘传感器 芯片ak09911 linux 驱动

时间:2024-11-04 09:47:26浏览次数:4  
标签:__ AK09911 data ak09911 IOCTL linux define sensor 罗盘

/* drivers/input/sensors/access/akm09911.c
*

  • Copyright © 2012-2015 ROCKCHIP.
  • Author: cfj
  • This software is licensed under the terms of the GNU General Public
  • License version 2, as published by the Free Software Foundation, and
  • may be copied, distributed, and modified under those terms.
  • This program is distributed in the hope that it will be useful,
  • but WITHOUT ANY WARRANTY; without even the implied warranty of
  • MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  • GNU General Public License for more details.

*/
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/gpio.h>
#include <linux/uaccess.h>
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>
#include <linux/of_gpio.h>
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif
#include <linux/sensor-dev.h>

#define SENSOR_DATA_SIZE 9
#define YPR_DATA_SIZE 16
#define RWBUF_SIZE 16

#define ACC_DATA_FLAG 0
#define MAG_DATA_FLAG 1
#define ORI_DATA_FLAG 2
#define AKM_NUM_SENSORS 3

#define ACC_DATA_READY (1 << (ACC_DATA_FLAG))
#define MAG_DATA_READY (1 << (MAG_DATA_FLAG))
#define ORI_DATA_READY (1 << (ORI_DATA_FLAG))

/Constant definitions of the AK09911./
#define AK09911_MEASUREMENT_TIME_US 10000

#define AK09911_MODE_SNG_MEASURE 0x01
#define AK09911_MODE_SELF_TEST 0x10
#define AK09911_MODE_FUSE_ACCESS 0x1F
#define AK09911_MODE_POWERDOWN 0x00
#define AK09911_RESET_DATA 0x01

/* Device specific constant values */
#define AK09911_REG_WIA1 0x00
#define AK09911_REG_WIA2 0x01
#define AK09911_REG_INFO1 0x02
#define AK09911_REG_INFO2 0x03
#define AK09911_REG_ST1 0x10
#define AK09911_REG_HXL 0x11
#define AK09911_REG_HXH 0x12
#define AK09911_REG_HYL 0x13
#define AK09911_REG_HYH 0x14
#define AK09911_REG_HZL 0x15
#define AK09911_REG_HZH 0x16
#define AK09911_REG_TMPS 0x17
#define AK09911_REG_ST2 0x18
#define AK09911_REG_CNTL1 0x30
#define AK09911_REG_CNTL2 0x31
#define AK09911_REG_CNTL3 0x32

#define AK09911_FUSE_ASAX 0x60
#define AK09911_FUSE_ASAY 0x61
#define AK09911_FUSE_ASAZ 0x62

#define AK09911_INFO_SIZE 2
#define AK09911_CONF_SIZE 3

#define COMPASS_IOCTL_MAGIC ‘c’

/* IOCTLs for AKM library /
#define ECS_IOCTL_WRITE _IOW(COMPASS_IOCTL_MAGIC, 0x01, char
)
#define ECS_IOCTL_READ _IOWR(COMPASS_IOCTL_MAGIC, 0x02, char*)
#define ECS_IOCTL_RESET _IO(COMPASS_IOCTL_MAGIC, 0x03) /* NOT used in AK8975 */
#define ECS_IOCTL_SET_MODE _IOW(COMPASS_IOCTL_MAGIC, 0x04, short)
#define ECS_IOCTL_GETDATA _IOR(COMPASS_IOCTL_MAGIC, 0x05, char[8])
#define ECS_IOCTL_SET_YPR _IOW(COMPASS_IOCTL_MAGIC, 0x06, short[12])
#define ECS_IOCTL_GET_OPEN_STATUS _IOR(COMPASS_IOCTL_MAGIC, 0x07, int)
#define ECS_IOCTL_GET_CLOSE_STATUS _IOR(COMPASS_IOCTL_MAGIC, 0x08, int)
#define ECS_IOCTL_GET_LAYOUT _IOR(COMPASS_IOCTL_MAGIC, 0x09, char)
#define ECS_IOCTL_GET_ACCEL _IOR(COMPASS_IOCTL_MAGIC, 0x0A, short[3])
#define ECS_IOCTL_GET_OUTBIT _IOR(COMPASS_IOCTL_MAGIC, 0x0B, char)
#define ECS_IOCTL_GET_INFO _IOR(COMPASS_IOCTL_MAGIC, 0x27, unsigned char[AK09911_INFO_SIZE])
#define ECS_IOCTL_GET_CONF _IOR(COMPASS_IOCTL_MAGIC, 0x28, unsigned char[AK09911_CONF_SIZE])
#define ECS_IOCTL_GET_PLATFORM_DATA _IOR(COMPASS_IOCTL_MAGIC, 0x0E, struct akm_platform_data)
#define ECS_IOCTL_GET_DELAY _IOR(COMPASS_IOCTL_MAGIC, 0x30, short)

#define AK09911_DEVICE_ID 0x05
static struct i2c_client *this_client;
static struct miscdevice compass_dev_device;

static int g_akm_rbuf_ready;
static int g_akm_rbuf[12];
static char g_sensor_info[AK09911_INFO_SIZE];
static char g_sensor_conf[AK09911_CONF_SIZE];

/****operate according to sensor chip:start/
static int sensor_active(struct i2c_client *client, int enable, int rate)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *)i2c_get_clientdata(client);
int result = 0;

if (enable)
	sensor->ops->ctrl_data = AK09911_MODE_SNG_MEASURE;
else
	sensor->ops->ctrl_data = AK09911_MODE_POWERDOWN;

result = sensor_write_reg(client, sensor->ops->ctrl_reg, sensor->ops->ctrl_data);
if (result)
	pr_err("%s:fail to active sensor\n", __func__);

return result;

}

static int sensor_init(struct i2c_client *client)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *)i2c_get_clientdata(client);
int result = 0;

this_client = client;

result = sensor->ops->active(client, 0, 0);
if (result) {
	pr_err("%s:line=%d,error\n", __func__, __LINE__);
	return result;
}

sensor->status_cur = SENSOR_OFF;

result = misc_register(&compass_dev_device);
if (result < 0) {
	pr_err("%s:fail to register misc device %s\n", __func__, compass_dev_device.name);
	result = -1;
}

g_sensor_info[0] = AK09911_REG_WIA1;
result = sensor_rx_data(client, g_sensor_info, AK09911_INFO_SIZE);
if (result) {
	pr_err("%s:line=%d,error\n", __func__, __LINE__);
	return result;
}

g_sensor_conf[0] = AK09911_FUSE_ASAX;
result = sensor_rx_data(client, g_sensor_conf, AK09911_CONF_SIZE);
if (result) {
	pr_err("%s:line=%d,error\n", __func__, __LINE__);
	return result;
}

return result;

}

static void compass_report_value(void)
{
struct sensor_private_data *sensor =
(struct sensor_private_data *)i2c_get_clientdata(this_client);
static int flag;

if (!g_akm_rbuf_ready) {
	pr_info("g_akm_rbuf not ready..............\n");
	return;
}

/* Report magnetic vector information */
if (atomic_read(&sensor->flags.mv_flag) && (g_akm_rbuf[0] & MAG_DATA_READY)) {
	/*
	 *input dev will ignore report data if data value is the same with last_value,
	 *sample rate will not enough by this way, so just avoid this case
	 */
	if ((sensor->axis.x == g_akm_rbuf[5]) &&
		(sensor->axis.y == g_akm_rbuf[6]) && (sensor->axis.z == g_akm_rbuf[7])) {
		if (flag) {
			flag = 0;
			sensor->axis.x += 1;
			sensor->axis.y += 1;
			sensor->axis.z += 1;
		} else {
			flag = 1;
			sensor->axis.x -= 1;
			sensor->axis.y -= 1;
			sensor->axis.z -= 1;
		}
	} else {
		sensor->axis.x = g_akm_rbuf[5];
		sensor->axis.y = g_akm_rbuf[6];
		sensor->axis.z = g_akm_rbuf[7];
	}
	input_report_abs(sensor->input_dev, ABS_HAT0X, sensor->axis.x);
	input_report_abs(sensor->input_dev, ABS_HAT0Y, sensor->axis.y);
	input_report_abs(sensor->input_dev, ABS_BRAKE, sensor->axis.z);
	input_report_abs(sensor->input_dev, ABS_HAT1X, g_akm_rbuf[8]);
}
input_sync(sensor->input_dev);

}

static int sensor_report_value(struct i2c_client *client)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(client);
char buffer[SENSOR_DATA_SIZE] = {0};
unsigned char *stat;
unsigned char *stat2;
int ret = 0;
char value = 0;

mutex_lock(&sensor->data_mutex);
compass_report_value();
mutex_unlock(&sensor->data_mutex);

if (sensor->ops->read_len < SENSOR_DATA_SIZE) {
	pr_err("%s:length is error,len=%d\n", __func__, sensor->ops->read_len);
	return -1;
}

memset(buffer, 0, SENSOR_DATA_SIZE);

/* Data bytes from hardware xL, xH, yL, yH, zL, zH */
do {
	*buffer = sensor->ops->read_reg;
	ret = sensor_rx_data(client, buffer, sensor->ops->read_len);
	if (ret < 0)
		return ret;
} while (0);

stat = &buffer[0];
stat2 = &buffer[7];

/*
 * ST : data ready -
 * Measurement has been completed and data is ready to be read.
 */
if ((*stat & 0x01) != 0x01) {
	pr_err("%s:ST is not set\n", __func__);
	return -1;
}

mutex_lock(&sensor->data_mutex);
memcpy(sensor->sensor_data, buffer, sensor->ops->read_len);
mutex_unlock(&sensor->data_mutex);

if ((sensor->pdata->irq_enable) && (sensor->ops->int_status_reg >= 0))
	value = sensor_read_reg(client, sensor->ops->int_status_reg);

/* trigger next measurement */
ret = sensor_write_reg(client, sensor->ops->ctrl_reg, sensor->ops->ctrl_data);
if (ret) {
	pr_err("%s:fail to set ctrl_data:0x%x\n", __func__, sensor->ops->ctrl_data);
	return ret;
}

return ret;

}

static void compass_set_YPR(int rbuf)
{
/
No events are reported */
if (!rbuf[0]) {
pr_info(“%s:Don’t waste a time.”, func);
return;
}

g_akm_rbuf_ready = 1;
memcpy(g_akm_rbuf, rbuf, 12 * sizeof(int));

}

static int compass_dev_open(struct inode *inode, struct file *file)
{
return 0;
}

static int compass_dev_release(struct inode *inode, struct file *file)
{
return 0;
}

static int compass_akm_set_mode(struct i2c_client *client, char mode)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(this_client);
int result = 0;

switch (mode & 0x1f) {
case AK09911_MODE_SNG_MEASURE:
case AK09911_MODE_SELF_TEST:
case AK09911_MODE_FUSE_ACCESS:
	if (sensor->status_cur == SENSOR_OFF) {
		sensor->stop_work = 0;
		sensor->status_cur = SENSOR_ON;
		pr_info("compass ak09911 start measure");
		schedule_delayed_work(&sensor->delaywork, 0);
	}
	break;

case AK09911_MODE_POWERDOWN:
	if (sensor->status_cur == SENSOR_ON) {
		sensor->stop_work = 1;
		cancel_delayed_work_sync(&sensor->delaywork);
		pr_info("compass ak09911 stop measure");
		g_akm_rbuf_ready = 0;
		sensor->status_cur = SENSOR_OFF;
	}
	break;
}

switch (mode & 0x1f) {
case AK09911_MODE_SNG_MEASURE:
	result = sensor_write_reg(client, sensor->ops->ctrl_reg, AK09911_MODE_SNG_MEASURE);
	if (result)
		pr_err("%s:i2c error,mode=%d\n", __func__, mode);
	break;
case AK09911_MODE_SELF_TEST:
	result = sensor_write_reg(client, sensor->ops->ctrl_reg, AK09911_MODE_SELF_TEST);
	if (result)
		pr_err("%s:i2c error,mode=%d\n", __func__, mode);
	break;
case AK09911_MODE_FUSE_ACCESS:
	result = sensor_write_reg(client, sensor->ops->ctrl_reg, AK09911_MODE_FUSE_ACCESS);
	if (result)
		pr_err("%s:i2c error,mode=%d\n", __func__, mode);
	break;
case AK09911_MODE_POWERDOWN:
	/* Set powerdown mode */
	result = sensor_write_reg(client, sensor->ops->ctrl_reg, AK09911_MODE_POWERDOWN);
	if (result)
		pr_err("%s:i2c error,mode=%d\n", __func__, mode);
	udelay(100);
	break;
default:
	pr_info("%s: Unknown mode(%d)", __func__, mode);
	result = -EINVAL;
	break;
}
return result;

}

static int compass_akm_reset(struct i2c_client *client)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(this_client);
int result = 0;

if (sensor->pdata->reset_pin > 0) {
	gpio_direction_output(sensor->pdata->reset_pin, GPIO_LOW);
	udelay(10);
	gpio_direction_output(sensor->pdata->reset_pin, GPIO_HIGH);
} else {
	/* Set measure mode */
	result = sensor_write_reg(client, sensor->ops->ctrl_reg, AK09911_MODE_SNG_MEASURE);
	if (result)
		pr_err("%s:fail to Set measure mode\n", __func__);
}

udelay(100);

return result;

}

static int compass_akm_get_openstatus(void)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(this_client);

wait_event_interruptible(sensor->flags.open_wq, (atomic_read(&sensor->flags.open_flag) != 0));

return atomic_read(&sensor->flags.open_flag);

}

static int compass_akm_get_closestatus(void)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(this_client);

wait_event_interruptible(sensor->flags.open_wq, (atomic_read(&sensor->flags.open_flag) <= 0));

return atomic_read(&sensor->flags.open_flag);

}

/* ioctl - I/O control */
static long compass_dev_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct sensor_private_data *sensor = (struct sensor_private_data *)i2c_get_clientdata(this_client);
struct i2c_client *client = this_client;
void __user *argp = (void __user *)arg;
int result = 0;
struct akm_platform_data compass;

/* NOTE: In this function the size of "char" should be 1-byte. */
char compass_data[SENSOR_DATA_SIZE];	/* for GETDATA */
char rwbuf[RWBUF_SIZE];	/* for READ/WRITE */
char mode;				/* for SET_MODE*/
int value[YPR_DATA_SIZE];		/* for SET_YPR */
int status;				/* for OPEN/CLOSE_STATUS */
int ret = -1;				/* Return value. */

int16_t acc_buf[3];			/* for GET_ACCEL */
int64_t delay[AKM_NUM_SENSORS];	/* for GET_DELAY */
char layout;		/* for GET_LAYOUT */
char outbit;		/* for GET_OUTBIT */

switch (cmd) {
case ECS_IOCTL_WRITE:
case ECS_IOCTL_READ:
	if (!argp)
		return -EINVAL;
	if (copy_from_user(&rwbuf, argp, sizeof(rwbuf)))
		return -EFAULT;
	break;
case ECS_IOCTL_SET_MODE:
	if (!argp)
		return -EINVAL;
	if (copy_from_user(&mode, argp, sizeof(mode)))
		return -EFAULT;
	break;
case ECS_IOCTL_SET_YPR:
	if (!argp)
		return -EINVAL;
	if (copy_from_user(&value, argp, sizeof(value)))
		return -EFAULT;
	break;
case ECS_IOCTL_GETDATA:
case ECS_IOCTL_GET_OPEN_STATUS:
case ECS_IOCTL_GET_CLOSE_STATUS:
case ECS_IOCTL_GET_DELAY:
case ECS_IOCTL_GET_LAYOUT:
case ECS_IOCTL_GET_OUTBIT:
case ECS_IOCTL_GET_ACCEL:
case ECS_IOCTL_GET_INFO:
case ECS_IOCTL_GET_CONF:
	/* Just check buffer pointer */
	if (!argp) {
		pr_err("%s:invalid argument\n", __func__);
		return -EINVAL;
	}
	break;
default:
	break;
}

switch (cmd) {
case ECS_IOCTL_WRITE:
	mutex_lock(&sensor->operation_mutex);
	if ((rwbuf[0] < 2) || (rwbuf[0] > (RWBUF_SIZE - 1))) {
		mutex_unlock(&sensor->operation_mutex);
		return -EINVAL;
	}
	ret = sensor_tx_data(client, &rwbuf[1], rwbuf[0]);
	if (ret < 0) {
		mutex_unlock(&sensor->operation_mutex);
		pr_err("%s:fait to tx data\n", __func__);
		return ret;
	}
	mutex_unlock(&sensor->operation_mutex);
	break;
case ECS_IOCTL_READ:
	mutex_lock(&sensor->operation_mutex);
	if ((rwbuf[0] < 1) || (rwbuf[0] > (RWBUF_SIZE - 1))) {
		mutex_unlock(&sensor->operation_mutex);
		pr_err("%s:data is error\n", __func__);
		return -EINVAL;
	}
	ret = sensor_rx_data(client, &rwbuf[1], rwbuf[0]);
	if (ret < 0) {
		mutex_unlock(&sensor->operation_mutex);
		pr_err("%s:fait to rx data\n", __func__);
		return ret;
	}
	mutex_unlock(&sensor->operation_mutex);
	break;
case ECS_IOCTL_SET_MODE:
	mutex_lock(&sensor->operation_mutex);
	if (sensor->ops->ctrl_data != mode) {
		ret = compass_akm_set_mode(client, mode);
		if (ret < 0) {
			pr_err("%s:fait to set mode\n", __func__);
			mutex_unlock(&sensor->operation_mutex);
			return ret;
		}

		sensor->ops->ctrl_data = mode;
	}
	mutex_unlock(&sensor->operation_mutex);
	break;
case ECS_IOCTL_GETDATA:
		mutex_lock(&sensor->data_mutex);
		memcpy(compass_data, sensor->sensor_data, SENSOR_DATA_SIZE);
		mutex_unlock(&sensor->data_mutex);
		break;
case ECS_IOCTL_SET_YPR:
		mutex_lock(&sensor->data_mutex);
		compass_set_YPR(value);
		mutex_unlock(&sensor->data_mutex);
	break;
case ECS_IOCTL_GET_OPEN_STATUS:
	status = compass_akm_get_openstatus();
	break;
case ECS_IOCTL_GET_CLOSE_STATUS:
	status = compass_akm_get_closestatus();
	break;
case ECS_IOCTL_GET_DELAY:
	mutex_lock(&sensor->operation_mutex);
	delay[0] = sensor->flags.delay;
	delay[1] = sensor->flags.delay;
	delay[2] = sensor->flags.delay;
	mutex_unlock(&sensor->operation_mutex);
	break;

case ECS_IOCTL_GET_PLATFORM_DATA:
	ret = copy_to_user(argp, &compass, sizeof(compass));
	if (ret < 0) {
		pr_err("%s:error,ret=%d\n", __func__, ret);
		return ret;
	}
	break;
case ECS_IOCTL_GET_LAYOUT:
	if ((sensor->pdata->layout >= 1) && (sensor->pdata->layout <= 8))
		layout = sensor->pdata->layout;
	else
		layout = 1;
	break;
case ECS_IOCTL_GET_OUTBIT:
	outbit = 1;
	break;
case ECS_IOCTL_RESET:
	ret = compass_akm_reset(client);
	if (ret < 0)
		return ret;
	break;
case ECS_IOCTL_GET_ACCEL:
	break;
case ECS_IOCTL_GET_INFO:
	ret = copy_to_user(argp, g_sensor_info, sizeof(g_sensor_info));
	if (ret < 0) {
		pr_err("%s:error,ret=%d\n", __func__, ret);
		return ret;
	}
	break;
case ECS_IOCTL_GET_CONF:
	ret = copy_to_user(argp, g_sensor_conf, sizeof(g_sensor_conf));
	if (ret < 0) {
		pr_err("%s:error,ret=%d\n", __func__, ret);
		return ret;
	}
	break;

default:
	return -ENOTTY;
}

switch (cmd) {
case ECS_IOCTL_READ:
	if (copy_to_user(argp, &rwbuf, rwbuf[0] + 1))
		return -EFAULT;
	break;
case ECS_IOCTL_GETDATA:
	if (copy_to_user(argp, &compass_data, sizeof(compass_data)))
		return -EFAULT;
	break;
case ECS_IOCTL_GET_OPEN_STATUS:
case ECS_IOCTL_GET_CLOSE_STATUS:
	if (copy_to_user(argp, &status, sizeof(status)))
		return -EFAULT;
	break;
case ECS_IOCTL_GET_DELAY:
	if (copy_to_user(argp, &delay, sizeof(delay)))
		return -EFAULT;
	break;
case ECS_IOCTL_GET_LAYOUT:
	if (copy_to_user(argp, &layout, sizeof(layout))) {
		pr_err("%s:error:%d\n", __func__, __LINE__);
		return -EFAULT;
	}
	break;
case ECS_IOCTL_GET_OUTBIT:
	if (copy_to_user(argp, &outbit, sizeof(outbit))) {
		pr_err("%s:error:%d\n", __func__, __LINE__);
		return -EFAULT;
	}
	break;
case ECS_IOCTL_GET_ACCEL:
	if (copy_to_user(argp, &acc_buf, sizeof(acc_buf))) {
		pr_err("%s:error:%d\n", __func__, __LINE__);
		return -EFAULT;
	}
	break;
default:
	break;
}

return result;

}

static const struct file_operations compass_dev_fops = {
.owner = THIS_MODULE,
.open = compass_dev_open,
.release = compass_dev_release,
.unlocked_ioctl = compass_dev_ioctl,
};

static struct miscdevice compass_dev_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = “akm_dev”,
.fops = &compass_dev_fops,
};

struct sensor_operate compass_akm09911_ops = {
.name = “akm09911”,
.type = SENSOR_TYPE_COMPASS,
.id_i2c = COMPASS_ID_AK09911,
.read_reg = AK09911_REG_ST1,
.read_len = SENSOR_DATA_SIZE,
.id_reg = AK09911_REG_WIA2,
.id_data = AK09911_DEVICE_ID,
.precision = 8,
.ctrl_reg = AK09911_REG_CNTL2,
.int_status_reg = SENSOR_UNKNOW_DATA,
.range = {-0xffff, 0xffff},
.trig = IRQF_TRIGGER_RISING,
.active = sensor_active,
.init = sensor_init,
.report = sensor_report_value,
.misc_dev = NULL,
};

/****operate according to sensor chip:end/
static int compass_akm09911_probe(struct i2c_client *client,
const struct i2c_device_id *devid)
{
return sensor_register_device(client, NULL, devid, &compass_akm09911_ops);
}

static int compass_akm09911_remove(struct i2c_client *client)
{
return sensor_unregister_device(client, NULL, &compass_akm09911_ops);
}

static const struct i2c_device_id compass_akm09911_id[] = {
{“ak09911”, COMPASS_ID_AK09911},
{}
};

static struct i2c_driver compass_akm09911_driver = {
.probe = compass_akm09911_probe,
.remove = compass_akm09911_remove,
.shutdown = sensor_shutdown,
.id_table = compass_akm09911_id,
.driver = {
.name = “compass_akm09911”,
#ifdef CONFIG_PM
.pm = &sensor_pm_ops,
#endif
},
};

module_i2c_driver(compass_akm09911_driver);

MODULE_AUTHOR(“qq712288614”);
MODULE_DESCRIPTION(“akm09911 3-Axis compasss driver”);
MODULE_LICENSE(“GPL”);

标签:__,AK09911,data,ak09911,IOCTL,linux,define,sensor,罗盘
From: https://blog.csdn.net/baidu_37552881/article/details/143475626

相关文章

  • linux 核间通讯rpmsg架构分析
    以imx8为例在最底层硬件上,A核和M核通讯是靠硬件来进行的,称为MU,如图LinuxRPMsg是在virtioframework上实现的一个消息传递机制VirtIO是一个用来实现“虚拟IO”的通用框架,典型虚拟的pci,网卡,磁盘等虚拟设备,kvm等都使用了这个技术与virtio对应的还有一个virtio-ring,其实现了v......
  • Linux基础命令(八) 之 alias ,history,stat,type,特殊符号及命令行快捷键
    目录一,命令别名alias常见用法二,命令历史history参数及其作用常见用法三.显示文件或文件系统的详细信息stat参数及其作用常见用法四,显示命令的类型type参数及其作用常见用法五,特殊符号及命令行快捷键一,命令别名alias别名是命令的快捷方式。对于需要经常......
  • 一.Linux文件基本属性
    前言:Linux系统是一个多用户系统,不同的用户处于不同的地位,也就是说具有不同的权限。为了安全,对于不同用户访问同一个文件,设置不同权限是很有必要的。一.文件的基本属性理解在Linux中,通常是这两个命令修改文件或目录所属用户与权限:chown:修改所属用户与组chmod:修改用户的权......
  • Linux常用命令(一)
    实验题目:Linux常用命令(一) 实验目的:(1)掌握图形方式下启动Shell程序的方法;(2)理解目录操作命令,包括ls命令、cd命令、pwd命令、mkdir命令和rmdir命令;(3)理解文件操作的基本命令,包括touch命令、cat命令、cp命令、rm命令、mv命令和chmod命令。实验内容:(1)列举出目录/etc下的子目录......
  • Linux系统编程IPC通信之---守护进程讲解(很重要)
    绪论首先在正式介绍守护进程之前,这里先给大家介绍一下进程组和会话。进程组一组相关进程的集合,所有进程的标识符相同.会话一组相关进程组的集合,一个会话中的所有进程共享单个控制终端.在任意时刻,会话中的其实中一个进程组会成为终端的前台进程组.其他进程组会成为......
  • 网络编程 TCP编程 Linux环境 C语言实现
    所有基于数据传输通信的程序,都会被分成两种角色:1.服务端:又称为服务器server提供一种通信服务的进程基本工作过程是:1>接收请求数据2>处理请求数据3>发送处理结果2.客户端:client使用一种通信服务的进程基本工作过程是:1>组织请求数据2>发送请求数据3>接收请求回......
  • 【Linux 25】网络套接字 socket 概念
    文章目录......
  • Linux用户管理
    文章目录......