主页:醋溜马桶圈-CSDN博客
目录
6.4 以页为单位的大内存管理span的定义及spanlist定义
7.4 windows和Linux下如何直接向堆申请页为单位的大块内存
8.多线程并发环境下,对比malloc和ConcurrentAlloc申请和释放内存效率对比
1.项目介绍
1.1 这个项目做的是什么?
当前项目是实现一个高并发的内存池,他的原型是google的一个开源项目tcmalloc,tcmalloc全称Thread-Caching Malloc,即线程缓存的malloc,实现了高效的多线程内存管理,用于替代系统的内存分配相关的函数(malloc、free)
我们这个项目是把tcmalloc最核心的框架简化后拿出来,模拟实现出一个自己的高并发内存池,目的就是学习tcamlloc的精华,这种方式有点类似我们之前学习STL容器的方式。但是相比STL容器部分,tcmalloc的代码量和复杂度上升了很多,大家要有心理准备。当前另一方面,难度的上升,我们的收获和成长也是在这个过程中同步上升。
另一方面tcmalloc是全球大厂google开源的,可以认为当时顶尖的C++高手写出来的,他的知名度也是非常高的,不少公司都在用它,Go语言直接用它做了自己内存分配器。
1.2 这个项目的要求的知识储备和难度?
这个项目会用到C/C++、数据结构(链表、哈希桶)、操作系统内存管理、单例模式、多线程、互斥锁等等方面的知识
2.什么是内存池
2.1 池化技术
所谓“池化技术”,就是程序先向系统申请过量的资源,然后自己管理,以备不时之需。之所以要申请过量的资源,是因为每次申请该资源都有较大的开销,不如提前申请好了,这样使用时就会变得非常快捷,大大提高程序运行效率。
在计算机中,有很多使用“池”这种技术的地方,除了内存池,还有连接池、线程池、对象池等。以服务器上的线程池为例,它的主要思想是:先启动若干数量的线程,让它们处于睡眠状态,当接收到客户端的请求时,唤醒池中某个睡眠的线程,让它来处理客户端的请求,当处理完这个请求,线程又进入睡眠状态。
2.2 内存池
内存池是指程序预先从操作系统申请一块足够大内存,此后,当程序中需要申请内存的时候,不是直接向操作系统申请,而是直接从内存池中获取;同理,当程序释放内存的时候,并不真正将内存返回给操作系统,而是返回内存池。当程序退出(或者特定时间)时,内存池才将之前申请的内存真正释放。
2.3 内存池主要解决的问题
内存池主要解决的当然是效率的问题,其次如果作为系统的内存分配器的角度,还需要解决一下内存碎片的问题。那么什么是内存碎片呢?
再需要补充说明的是内存碎片分为外碎片和内碎片,上面我们讲的外碎片问题。外部碎片是一些空闲的连续内存区域太小,这些内存空间不连续,以至于合计的内存足够,但是不能满足一些的内存分配申请需求。内部碎片是由于一些对齐的需求,导致分配出去的空间中一些内存无法被利用。
2.4 malloc
C/C++中我们要动态申请内存都是通过malloc去申请内存,但是我们要知道,实际我们不是直接去堆获取内存的,而malloc就是一个内存池。malloc() 相当于向操作系统“批发”了一块较大的内存空间,然后“零售”给程序用。当全部“售完”或程序有大量的内存需求时,再根据实际需求向操作系统“进货”。malloc的实现方式有很多种,一般不同编译器平台用的都是不同的。比如windows的vs系列用的微软自己写的一套,linux gcc用的glibc中的ptmalloc。下面有几篇关于这块的文章,大概可以去简单看看了解一下
https://zhuanlan.zhihu.com/p/384022573
3.开胃菜--先设计一个定长的内存池
作为程序员(C/C++)我们知道申请内存使用的是malloc,malloc其实就是一个通用的大众货,什么场景下都可以用,但是什么场景下都可以用就意味着什么场景下都不会有很高的性能,下面我们就先来设计一个定长内存池做个开胃菜,当然这个定长内存池在我们后面的高并发内存池中也是有价值的,所以学习他目的有两层,先熟悉一下简单内存池是如何控制的,第二他会作为我们后面内存池的一个基础组件。
windows和Linux下如何直接向堆申请页为单位的大块内存:
Linux进程分配内存的两种方式--brk() 和mmap() - VinoZhu - 博客园
// 直接去堆上按页申请空间
inline static void* SystemAlloc(size_t kpage)
{
#ifdef _WIN32
void* ptr = VirtualAlloc(0, kpage * (1 << 12), MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE);
#else
// linux下brk mmap等
#endif
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
template<class T>
class ObjectPool
{
public:
T* New()
{
T* obj = nullptr;
// 如果自由链表有对象,直接取一个
if (_freeList)
{
obj = (T*)_freeList;
_freeList = *((void**)_freeList);
}
else
{
if (_leftBytes < sizeof(T))
{
_leftBytes = 128 * 1024;
//_memory = (char*)malloc(_leftBytes);
_memory = (char*)SystemAlloc(_leftBytes);
if (_memory == nullptr)
{
throw std::bad_alloc();
}
}
obj = (T*)_memory;
size_t objSize = sizeof(T) < sizeof(void*) ? sizeof(void*) :
sizeof(T);
_memory += objSize;
_leftBytes -= objSize;
}
// 使用定位new调用T的构造函数初始化
new(obj)T;
return obj;
}
void Delete(T* obj)
{
// 显示调用的T的析构函数进行清理
obj->~T();
// 头插到freeList
*((void**)obj) = _freeList;
_freeList = obj;
}
private:
char* _memory = nullptr; // 指向内存块的指针
int _leftBytes = 0; // 内存块中剩余字节数
void* _freeList = nullptr; // 管理还回来的内存对象的自由链表
};
struct TreeNode
{
int _val;
TreeNode* _left;
TreeNode* _right;
TreeNode()
:_val(0)
, _left(nullptr)
, _right(nullptr)
{}
};
void TestObjectPool()
{
// 申请释放的轮次
const size_t Rounds = 3;
// 每轮申请释放多少次
const size_t N = 100000;
size_t begin1 = clock();
std::vector<TreeNode*> v1;
v1.reserve(N);
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v1.push_back(new TreeNode);
}
for (int i = 0; i < N; ++i)
{
delete v1[i];
}
v1.clear();
}
size_t end1 = clock();
ObjectPool<TreeNode> TNPool;
size_t begin2 = clock();
std::vector<TreeNode*> v2;
v2.reserve(N);
for (size_t j = 0; j < Rounds; ++j)
{
for (int i = 0; i < N; ++i)
{
v2.push_back(TNPool.New());
}
for (int i = 0; i < 100000; ++i)
{
TNPool.Delete(v2[i]);
}
v2.clear();
}
size_t end2 = clock();
cout << "new cost time:" << end1 - begin1 << endl;
cout << "object pool cost time:" << end2 - begin2 << endl;
}
4.高并发内存池整体框架设计
现代很多的开发环境都是多核多线程,在申请内存的场景下,必然存在激烈的锁竞争问题。malloc本身其实已经很优秀,那么我们项目的原型tcmalloc就是在多线程高并发的场景下更胜一筹,所以这次我们实现的内存池需要考虑以下几方面的问题。
- 性能问题
- 多线程环境下,锁竞争问题
- 内存碎片问题
concurrent memory pool主要由以下3个部分构成
- thread cache:线程缓存是每个线程独有的,用于小于256KB的内存的分配,线程从这里申请内存不需要加锁,每个线程独享一个cache,这也就是这个并发线程池高效的地方。
- central cache:中心缓存是所有线程所共享,thread cache是按需从central cache中获取的对象。central cache合适的时机回收thread cache中的对象,避免一个线程占用了太多的内存,而其他线程的内存吃紧,达到内存分配在多个线程中更均衡的按需调度的目的。central cache是存在竞争的,所以从这里取内存对象是需要加锁,首先这里用的是桶锁,其次只有thread cache的没有内存对象时才会找central cache,所以这里竞争不会很激烈。
- page cache:页缓存是在central cache缓存上面的一层缓存,存储的内存是以页为单位存储及分配的,central cache没有内存对象时,从page cache分配出一定数量的page,并切割成定长大小的小块内存,分配给central cache。当一个span的几个跨度页的对象都回收以后,page cache会回收central cache满足条件的span对象,并且合并相邻的页,组成更大的页,缓解内存碎片的问题。
5.高并发内存池--thread cache
thread cache是哈希桶结构,每个桶是一个按桶位置映射大小的内存块对象的自由链表。每个线程都会有一个thread cache对象,这样每个线程在这里获取对象和释放对象时是无锁的
5.1 申请内存
- 当内存申请size<=256KB,先获取到线程本地存储的thread cache对象,计算size映射的哈希桶自由链表下标i。
- 如果自由链表_freeLists[i]中有对象,则直接Pop一个内存对象返回。
- 如果_freeLists[i]中没有对象时,则批量从central cache中获取一定数量的对象,插入到自由链表并返回一个对象。
5.2 释放内存
- 当释放内存小于256k时将内存释放回thread cache,计算size映射自由链表桶位置i,将对象Push到_freeLists[i]。
- 当链表的长度过长,则回收一部分内存对象到central cache。
https://zhuanlan.zhihu.com/p/142418922
5.3 thread cache代码框架
// thread cache本质是由一个哈希映射的对象自由链表构成
class ThreadCache
{
public:
// 申请和释放内存对象
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size);
// 从中心缓存获取对象
void* FetchFromCentralCache(size_t index, size_t size);
// 释放对象时,链表过长时,回收内存回到中心缓存
void ListTooLong(FreeList& list, size_t size);
private:
FreeList _freeLists[NFREELIST];
};
// TLS thread local storage
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;
// 管理小对象的自由链表
// 管理切分好的小对象的自由链表
class FreeList
{
public:
void Push(void* obj)
{
assert(obj);
// 头插
//*(void**)obj = _freeList;
NextObj(obj) = _freeList;
_freeList = obj;
++_size;
}
void PushRange(void* start, void* end, size_t n)
{
NextObj(end) = _freeList;
_freeList = start;
_size += n;
}
void PopRange(void*& start, void*& end, size_t n)
{
assert(n >= _size);
start = _freeList;
end = start;
for (size_t i = 0; i < n - 1; ++i)
{
end = NextObj(end);
}
_freeList = NextObj(end);
NextObj(end) = nullptr;
_size -= n;
}
void* Pop()
{
assert(_freeList);
// 头删
void* obj = _freeList;
_freeList = NextObj(obj);
--_size;
return obj;
}
bool Empty()
{
return _freeList == nullptr;
}
size_t& MaxSize()
{
return _maxSize;
}
size_t Size()
{
return _size;
}
private:
void* _freeList = nullptr;
size_t _maxSize = 1;
size_t _size = 0;
};
5.4 自由链表的哈希桶跟对象大小的映射关系
// 小于等于MAX_BYTES,就找thread cache申请
// 大于MAX_BYTES,就直接找page cache或者系统堆申请
static const size_t MAX_BYTES = 256 * 1024;
// thread cache 和 central cache自由链表哈希桶的表大小
static const size_t NFREELISTS = 208;
// page cache 管理span list哈希表大小
static const size_t NPAGES = 129;
// 页大小转换偏移, 即一页定义为2^13,也就是8KB
static const size_t PAGE_SHIFT = 13;
// 地址大小类型,32位下是4byte类型,64位下是8byte类型
#ifdef _WIN32
typedef size_t ADDRES_INT;
#else
typedef unsigned long long ADDRES_INT;
#endif // _WIN32
// 页编号类型,32位下是4byte类型,64位下是8byte类型
#ifdef _WIN32
typedef size_t PageID;
#else
typedef unsigned long long PageID;
#endif // _WIN32
// 获取内存对象中存储的头4 or 8字节值,即链接的下一个对象的地址
inline void*& NextObj(void* obj)
{
return *((void**)obj);
}
// 管理对齐和映射等关系
class SizeClass
{
public:
// 整体控制在最多10%左右的内碎片浪费
// [1,128] 8byte对齐 freelist[0,16)
// [128+1,1024] 16byte对齐 freelist[16,72)
// [1024+1,8*1024] 128byte对齐 freelist[72,128)
// [8*1024+1,64*1024] 1024byte对齐 freelist[128,184)
// [64*1024+1,256*1024] 8*1024byte对齐 freelist[184,208)
static inline size_t _RoundUp(size_t bytes, size_t align)
{
return (((bytes)+align - 1) & ~(align - 1));
}
// 对齐大小计算
static inline size_t RoundUp(size_t bytes)
{
if (bytes <= 128) {
return _RoundUp(bytes, 8);
}
else if (bytes <= 1024) {
return _RoundUp(bytes, 16);
}
else if (bytes <= 8 * 1024) {
return _RoundUp(bytes, 128);
}
else if (bytes <= 64 * 1024) {
return _RoundUp(bytes, 1024);
}
else if (bytes <= 256 * 1024) {
return _RoundUp(bytes, 8 * 1024);
}
else {
return _RoundUp(bytes, 1 << PAGE_SHIFT);
}
return -1;
}
static inline size_t _Index(size_t bytes, size_t align_shift)
{
return ((bytes + (1 << align_shift) - 1) >> align_shift) - 1;
}
// 计算映射的哪一个自由链表桶
static inline size_t Index(size_t bytes)
{
assert(bytes <= MAX_BYTES);
// 每个区间有多少个链
static int group_array[4] = { 16, 56, 56, 56 };
if (bytes <= 128) {
return _Index(bytes, 3);
}
else if (bytes <= 1024) {
return _Index(bytes - 128, 4) + group_array[0];
}
else if (bytes <= 8 * 1024) {
return _Index(bytes - 1024, 7) + group_array[1] + group_array[0];
}
else if (bytes <= 64 * 1024) {
return _Index(bytes - 8 * 1024, 10) + group_array[2] + group_array[1]
+ group_array[0];
}
else if (bytes <= 256 * 1024) {
return _Index(bytes - 64 * 1024, 13) + group_array[3] +
group_array[2] + group_array[1] + group_array[0];
}
else {
assert(false);
}
return -1;
}
// 一次从中心缓存获取多少个
static size_t NumMoveSize(size_t size)
{
if (size == 0)
return 0;
// [2, 512],一次批量移动多少个对象的(慢启动)上限值
// 小对象一次批量上限高
// 小对象一次批量上限低
int num = MAX_BYTES / size;
if (num < 2)
num = 2;
if (num > 512)
num = 512;
return num;
}
// 计算一次向系统获取几个页
// 单个对象 8byte
// ...
// 单个对象 256KB
static size_t NumMovePage(size_t size)
{
size_t num = NumMoveSize(size);
size_t npage = num * size;
npage >>= PAGE_SHIFT;
if (npage == 0)
npage = 1;
return npage;
}
};
6.高并发内存池--central cache
central cache也是一个哈希桶结构,他的哈希桶的映射关系跟thread cache是一样的。不同的是他的每个哈希桶位置挂是SpanList链表结构,不过每个映射桶下面的span中的大内存块被按映射关系切成了一个个小内存块对象挂在span的自由链表中。
6.1 申请内存
- 当thread cache中没有内存时,就会批量向central cache申请一些内存对象,这里的批量获取对象的数量使用了类似网络tcp协议拥塞控制的慢开始算法;central cache也有一个哈希映射的spanlist,spanlist中挂着span,从span中取出对象给thread cache,这个过程是需要加锁的,不过这里使用的是一个桶锁,尽可能提高效率。
- central cache映射的spanlist中所有span的都没有内存以后,则需要向page cache申请一个新的span对象,拿到span以后将span管理的内存按大小切好作为自由链表链接到一起。然后从span中取对象给thread cache。
- central cache的中挂的span中use_count记录分配了多少个对象出去,分配一个对象给thread cache,就++use_count
6.2 释放内存
- 当thread_cache过长或者线程销毁,则会将内存释放回central cache中的,释放回来时--use_count。当use_count减到0时则表示所有对象都回到了span,则将span释放回page cache,page cache中会对前后相邻的空闲页进行合并。
6.3 CentralCache 代码框架
// 单例模式
class CentralCache
{
public:
static CentralCache* GetInstance()
{
return &_sInst;
}
// 获取一个非空的span
Span* GetOneSpan(SpanList& list, size_t byte_size);
// 从中心缓存获取一定数量的对象给thread cache
size_t FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t
size);
// 将一定数量的对象释放到span跨度
void ReleaseListToSpans(void* start, size_t byte_size);
private:
SpanList _spanLists[NFREELIST];
private:
CentralCache()
{}
CentralCache(const CentralCache&) = delete;
static CentralCache _sInst;
};
6.4 以页为单位的大内存管理span的定义及spanlist定义
// Span管理一个跨度的大块内存
// 管理以页为单位的大块内存
// 管理多个连续页大块内存跨度结构
struct Span
{
PAGE_ID _pageId = 0; // 大块内存起始页的页号
size_t _n = 0; // 页的数量
Span* _next = nullptr; // 双向链表的结构
Span* _prev = nullptr;
size_t _objSize = 0; // 切好的小对象的大小
size_t _useCount = 0; // 切好小块内存,被分配给thread cache的计数
void* _freeList = nullptr; // 切好的小块内存的自由链表
bool _isUse = false; // 是否在被使用
};
// 带头双向循环链表
class SpanList
{
public:
SpanList()
{
_head = new Span;
_head->_next = _head;
_head->_prev = _head;
}
Span* Begin()
{
return _head->_next;
}
Span* End()
{
return _head;
}
bool Empty()
{
return _head->_next == _head;
}
void PushFront(Span* span)
{
Insert(Begin(), span);
}
Span* PopFront()
{
Span* front = _head->_next;
Erase(front);
return front;
}
void Insert(Span* pos, Span* newSpan)
{
assert(pos);
assert(newSpan);
Span* prev = pos->_prev;
// prev newspan pos
prev->_next = newSpan;
newSpan->_prev = prev;
newSpan->_next = pos;
pos->_prev = newSpan;
}
void Erase(Span* pos)
{
assert(pos);
assert(pos != _head);
Span* prev = pos->_prev;
Span* next = pos->_next;
prev->_next = next;
next->_prev = prev;
}
private:
Span* _head;
public:
std::mutex _mtx; // 桶锁
};
7.高并发内存池--page cache
7.1 申请内存
- 当central cache向page cache申请内存时,page cache先检查对应位置有没有span,如果没有则向更大页寻找一个span,如果找到则分裂成两个。比如:申请的是4页page,4页page后面没有挂span,则向后面寻找更大的span,假设在10页page位置找到一个span,则将10页page span分裂为一个4页page span和一个6页page span。
- 如果找到_spanList[128]都没有合适的span,则向系统使用mmap、brk或者是VirtualAlloc等方式申请128页page span挂在自由链表中,再重复1中的过程。
- 需要注意的是central cache和page cache 的核心结构都是spanlist的哈希桶,但是他们是有本质区别的,central cache中哈希桶,是按跟thread cache一样的大小对齐关系映射的,他的spanlist中挂的span中的内存都被按映射关系切好链接成小块内存的自由链表。而page cache 中的spanlist则是按下标桶号映射的,也就是说第i号桶中挂的span都是i页内存。
7.2 释放内存
- 如果central cache释放回一个span,则依次寻找span的前后page id的没有在使用的空闲span,看是否可以合并,如果合并继续向前寻找。这样就可以将切小的内存合并收缩成大的span,减少内存碎片。
7.3 PageCache 代码框架
// 1.page cache是一个以页为单位的span自由链表
// 2.为了保证全局只有唯一的page cache,这个类被设计成了单例模式。
class PageCache
{
public:
static PageCache* GetInstance()
{
return &_sInst;
}
// 获取从对象到span的映射
Span* MapObjectToSpan(void* obj);
// 释放空闲span回到Pagecache,并合并相邻的span
void ReleaseSpanToPageCache(Span* span);
// 获取一个K页的span
Span* NewSpan(size_t k);
std::mutex _pageMtx;
private:
SpanList _spanLists[NPAGES];
ObjectPool<Span> _spanPool;
//std::unordered_map<PAGE_ID, Span*> _idSpanMap;
//std::map<PAGE_ID, Span*> _idSpanMap;
TCMalloc_PageMap1<32 - PAGE_SHIFT> _idSpanMap;
PageCache()
{}
PageCache(const PageCache&) = delete;
static PageCache _sInst;
};
7.4 windows和Linux下如何直接向堆申请页为单位的大块内存
Linux进程分配内存的两种方式--brk() 和mmap() - VinoZhu - 博客园
inline static void* SystemAlloc(size_t kpage)
{
#ifdef _WIN32
void* ptr = VirtualAlloc(0, kpage * (1 << PAGE_SHIFT),
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else
// brk mmap等
#endif
if (ptr == nullptr)
throw std::bad_alloc();
return ptr;
}
inline static void SystemFree(void* ptr)
{
#ifdef _WIN32
VirtualFree(ptr, 0, MEM_RELEASE);
#else
// sbrk unmmap等
#endif
}
8.多线程并发环境下,对比malloc和ConcurrentAlloc申请和释放内存效率对比
void BenchmarkMalloc(size_t ntimes, size_t nworks, size_t rounds)
{
std::vector<std::thread> vthread(nworks);
std::atomic<size_t> malloc_costtime = 0;
std::atomic<size_t> free_costtime = 0;
for (size_t k = 0; k < nworks; ++k)
{
vthread[k] = std::thread([&, k]() {
std::vector<void*> v;
v.reserve(ntimes);
for (size_t j = 0; j < rounds; ++j)
{
size_t begin1 = clock();
for (size_t i = 0; i < ntimes; i++)
{
v.push_back(malloc(16));
//v.push_back(malloc((16 + i) % 8192 + 1));
}
size_t end1 = clock();
size_t begin2 = clock();
for (size_t i = 0; i < ntimes; i++)
{
free(v[i]);
}
size_t end2 = clock();
v.clear();
malloc_costtime += (end1 - begin1);
free_costtime += (end2 - begin2);
}
});
}
for (auto& t : vthread)
{
t.join();
}
printf("%u个线程并发执行%u轮次,每轮次malloc %u次: 花费:%u ms\n",
nworks, rounds, ntimes, malloc_costtime);
printf("%u个线程并发执行%u轮次,每轮次free %u次: 花费:%u ms\n",
nworks, rounds, ntimes, free_costtime);
printf("%u个线程并发malloc&free %u次,总计花费:%u ms\n",
nworks, nworks * rounds * ntimes, malloc_costtime + free_costtime);
}
// 单轮次申请释放次数 线程数 轮次
void BenchmarkConcurrentMalloc(size_t ntimes, size_t nworks, size_t rounds)
{
std::vector<std::thread> vthread(nworks);
std::atomic<size_t> malloc_costtime = 0;
std::atomic<size_t> free_costtime = 0;
for (size_t k = 0; k < nworks; ++k)
{
vthread[k] = std::thread([&]() {
std::vector<void*> v;
v.reserve(ntimes);
for (size_t j = 0; j < rounds; ++j)
{
size_t begin1 = clock();
for (size_t i = 0; i < ntimes; i++)
{
v.push_back(ConcurrentAlloc(16));
//v.push_back(ConcurrentAlloc((16 + i) % 8192 + 1));
}
size_t end1 = clock();
size_t begin2 = clock();
for (size_t i = 0; i < ntimes; i++)
{
ConcurrentFree(v[i]);
}
size_t end2 = clock();
v.clear();
malloc_costtime += (end1 - begin1);
free_costtime += (end2 - begin2);
}
});
}
for (auto& t : vthread)
{
t.join();
}
printf("%u个线程并发执行%u轮次,每轮次concurrent alloc %u次: 花费:%u ms\n",
nworks, rounds, ntimes, malloc_costtime);
printf("%u个线程并发执行%u轮次,每轮次concurrent dealloc %u次: 花费:%u ms\n",
nworks, rounds, ntimes, free_costtime);
printf("%u个线程并发concurrent alloc&dealloc %u次,总计花费:%u ms\n",
nworks, nworks * rounds * ntimes, malloc_costtime + free_costtime);
}
int main()
{
size_t n = 10000;
cout << "==========================================================" <<
endl;
BenchmarkConcurrentMalloc(n, 4, 10);
cout << endl << endl;
BenchmarkMalloc(n, 4, 10);
cout << "==========================================================" <<
endl;
return 0;
}
9.使用tcmalloc源码中实现基数树进行优化
// Single-level array
template <int BITS>
class TCMalloc_PageMap1 {
private:
static const int LENGTH = 1 << BITS;
void** array_;
public:
typedef uintptr_t Number;
explicit TCMalloc_PageMap1(void* (*allocator)(size_t)) {
array_ = reinterpret_cast<void**>((*allocator)(sizeof(void*) << BITS));
memset(array_, 0, sizeof(void*) << BITS);
}
// Return the current value for KEY. Returns NULL if not yet set,
// or if k is out of range.
void* get(Number k) const {
if ((k >> BITS) > 0) {
return NULL;
}
return array_[k];
}
// REQUIRES "k" is in range "[0,2^BITS-1]".
// REQUIRES "k" has been ensured before.
//
// Sets the value 'v' for key 'k'.
void set(Number k, void* v) {
array_[k] = v;
}
};
// Two-level radix tree
template <int BITS>
class TCMalloc_PageMap2 {
private:
// Put 32 entries in the root and (2^BITS)/32 entries in each leaf.
static const int ROOT_BITS = 5;
static const int ROOT_LENGTH = 1 << ROOT_BITS;
static const int LEAF_BITS = BITS - ROOT_BITS;
static const int LEAF_LENGTH = 1 << LEAF_BITS;
// Leaf node
struct Leaf {
void* values[LEAF_LENGTH];
};
Leaf* root_[ROOT_LENGTH]; // Pointers to 32 child nodes
void* (*allocator_)(size_t); // Memory allocator
public:
typedef uintptr_t Number;
explicit TCMalloc_PageMap2(void* (*allocator)(size_t)) {
allocator_ = allocator;
memset(root_, 0, sizeof(root_));
}
void* get(Number k) const {
const Number i1 = k >> LEAF_BITS;
const Number i2 = k & (LEAF_LENGTH - 1);
if ((k >> BITS) > 0 || root_[i1] == NULL) {
return NULL;
}
return root_[i1]->values[i2];
}
void set(Number k, void* v) {
const Number i1 = k >> LEAF_BITS;
const Number i2 = k & (LEAF_LENGTH - 1);
ASSERT(i1 < ROOT_LENGTH);
root_[i1]->values[i2] = v;
}
bool Ensure(Number start, size_t n) {
for (Number key = start; key <= start + n - 1;) {
const Number i1 = key >> LEAF_BITS;
// Check for overflow
if (i1 >= ROOT_LENGTH)
return false;
// Make 2nd level node if necessary
if (root_[i1] == NULL) {
Leaf* leaf = reinterpret_cast<Leaf*>((*allocator_)
(sizeof(Leaf)));
if (leaf == NULL) return false;
memset(leaf, 0, sizeof(*leaf));
root_[i1] = leaf;
}
// Advance key past whatever is covered by this leaf node
key = ((key >> LEAF_BITS) + 1) << LEAF_BITS;
}
return true;
}
void PreallocateMoreMemory() {
// Allocate enough to keep track of all possible pages
Ensure(0, 1 << BITS);
}
};
// Three-level radix tree
template <int BITS>
class TCMalloc_PageMap3 {
private:
// How many bits should we consume at each interior level
static const int INTERIOR_BITS = (BITS + 2) / 3; // Round-up
static const int INTERIOR_LENGTH = 1 << INTERIOR_BITS;
// How many bits should we consume at leaf level
static const int LEAF_BITS = BITS - 2 * INTERIOR_BITS;
static const int LEAF_LENGTH = 1 << LEAF_BITS;
// Interior node
struct Node {
Node* ptrs[INTERIOR_LENGTH];
};
// Leaf node
struct Leaf {
void* values[LEAF_LENGTH];
};
Node* root_; // Root of radix tree
void* (*allocator_)(size_t); // Memory allocator
Node* NewNode() {
Node* result = reinterpret_cast<Node*>((*allocator_)(sizeof(Node)));
if (result != NULL) {
memset(result, 0, sizeof(*result));
}
return result;
}
public:
typedef uintptr_t Number;
explicit TCMalloc_PageMap3(void* (*allocator)(size_t)) {
allocator_ = allocator;
root_ = NewNode();
}
void* get(Number k) const {
const Number i1 = k >> (LEAF_BITS + INTERIOR_BITS);
const Number i2 = (k >> LEAF_BITS) & (INTERIOR_LENGTH - 1);
const Number i3 = k & (LEAF_LENGTH - 1);
if ((k >> BITS) > 0 ||
root_->ptrs[i1] == NULL || root_->ptrs[i1]->ptrs[i2] == NULL) {
return NULL;
}
return reinterpret_cast<Leaf*>(root_->ptrs[i1]->ptrs[i2])->values[i3];
}
void set(Number k, void* v) {
ASSERT(k >> BITS == 0);
const Number i1 = k >> (LEAF_BITS + INTERIOR_BITS);
const Number i2 = (k >> LEAF_BITS) & (INTERIOR_LENGTH - 1);
const Number i3 = k & (LEAF_LENGTH - 1);
reinterpret_cast<Leaf*>(root_->ptrs[i1]->ptrs[i2])->values[i3] = v;
}
bool Ensure(Number start, size_t n) {
for (Number key = start; key <= start + n - 1;) {
const Number i1 = key >> (LEAF_BITS + INTERIOR_BITS);
const Number i2 = (key >> LEAF_BITS) & (INTERIOR_LENGTH - 1);
// Check for overflow
if (i1 >= INTERIOR_LENGTH || i2 >= INTERIOR_LENGTH)
return false;
// Make 2nd level node if necessary
if (root_->ptrs[i1] == NULL) {
Node* n = NewNode();
if (n == NULL) return false;
root_->ptrs[i1] = n;
}
// Make leaf node if necessary
if (root_->ptrs[i1]->ptrs[i2] == NULL) {
Leaf* leaf = reinterpret_cast<Leaf*>((*allocator_)
(sizeof(Leaf)));
if (leaf == NULL) return false;
memset(leaf, 0, sizeof(*leaf));
root_->ptrs[i1]->ptrs[i2] = reinterpret_cast<Node*>(leaf);
}
// Advance key past whatever is covered by this leaf node
key = ((key >> LEAF_BITS) + 1) << LEAF_BITS;
}
return true;
}
void PreallocateMoreMemory() {
}
};
10.扩展学习及当前项目实现的不足
实际中我们测试了,当前实现的并发内存池比malloc/free是更加高效的,那么我们能否替换到系统调用malloc呢?实际上是可以的。
- 不同平台替换方式不同。 基于unix的系统上的glibc,使用了weak alias的方式替换。具体来说是因为这些入口函数都被定义成了weak symbols,再加上gcc支持 alias attribute,所以替换就变成了这种通用形式:
void* malloc(size_t size) THROW attribute__ ((alias (tc_malloc)))
因此所有malloc的调用都跳转到了tc_malloc的实现
具体参考这里:GCC __attribute__ 之weak,alias属性_gcc weak alias-CSDN博客
有些平台不支持这样的东西,需要使用hook的钩子技术来做。
关于hook请看这里:Hook技术 - zzfx - 博客园
11.调研参考资料
内存优化总结:ptmalloc、tcmalloc和jemalloc_ptmalloc jemalloc tcmalloc-CSDN博客
TCMalloc源码学习(一) - persistentsnail - 博客园
TCMALLOC 源码阅读_tcmalloc malloc的hook-CSDN博客
https://www.zhihu.com/question/25527491/answer/1851688957
12.项目代码 gitee
MemoryPool: 高并发内存池项目 (gitee.com)
标签:malloc,span,void,cache,c++,并发,内存,size From: https://blog.csdn.net/m0_74722801/article/details/142347532