首页 > 系统相关 >USB总线-Linux内核USB3.0主机控制器驱动框架分析(十二)

USB总线-Linux内核USB3.0主机控制器驱动框架分析(十二)

时间:2024-09-13 11:03:51浏览次数:10  
标签:usb int USB USB3.0 hcd Linux device struct

1.概述

如下图所示,Linux内核中USB主机体系结构由五部分组成,分别为Application Software、USB Class Driver、USB Core((USB Driver)、USB Host Controller Driver、USB Host Controller。应用程序处于用户空间,通过系统调用访问Class Driver,从而间接的访问USB设备,如主机端的应用程序aplay、arecord可以访问USB音频设备。Class Driver是某一类设备驱动,不同类设备会匹配不同的Class Driver,如USB音频设备会匹配Audio驱动,USB存储设备会匹配Mass Storage驱动,鼠标和键盘会匹配HID驱动。USB Core(USB Driver)是内核设计的一个抽象层,目的是将Class Driver和USB Host Controller Driver分隔开,使两者都依赖一个稳定的中间层;USB Core(USB Driver)向上提供通信接口,向下统一管理USB设备,同时完成USB设备和USB Class Driver的匹配工作。USB Host Controller目前有4种不同的硬件级接口标准,分别为OHCI、UHCI、EHCI、xHCI,OHCI和UHCI实现了USB1.1,EHCI实现了USB2.0,xHCI实现了USB3.2,不同的接口标准都有对应的USB Host Controller Driver,如xHCI对应于xhci-hcd驱动,向下兼容OHCI和EHCI。最底层是USB Host Controller硬件。下面将分别介绍Linux内核中USB主机体系结构USB Class Driver、USB Core(USB Driver)、USB Host Controller Driver四个部分。

image

image

2.USB Class Driver

Linux内核使用struct usb_driver数据结构描述USB Class Driver,使用usb_registerusb_deregister注册、注销struct usb_driver。USB Class Driver可以使用module_usb_driver宏定义注册驱动。需要注意的是,USB Class Driver是针对USB接口的,如果一个设备是复合设备,每个接口都有不同的功能,则每个接口都有对应的USB Class Driver。主机枚举设备的时候,会识别每个接口的功能同时匹配对应的struct usb_driver,匹配成功后struct usb_driverprobe函数被调用。

[include/linux/usb.h]
struct usb_driver {
    const char *name; /* USB Class Driver名称,必须唯一且和模块名称一样 */
    /* 当USB设备的接口和驱动匹配成功后,该函数被调用 */
    int (*probe) (struct usb_interface *intf,
            const struct usb_device_id *id);
    /* 断开USB设备或者卸载驱动模块时调用 */
    void (*disconnect) (struct usb_interface *intf);
    /* usbf接口,用户空间可以通过该函数和驱动通信 */
    int (*unlocked_ioctl) (struct usb_interface *intf,
        unsigned int code, void *buf);
    /* 功耗管理相关函数 */
    int (*suspend) (struct usb_interface *intf, pm_message_t message);
    int (*resume) (struct usb_interface *intf);
    int (*reset_resume)(struct usb_interface *intf);
    /* Called by usb_reset_device() when the device is about to be
     * reset.  This routine must not return until the driver has no active
     * URBs for the device, and no more URBs may be submitted until the
     * post_reset method is called. 
     */
    int (*pre_reset)(struct usb_interface *intf);
    /* Called by usb_reset_device() after the device has been reset */
    int (*post_reset)(struct usb_interface *intf);
    /* 用于匹配USB Class Driver */
    const struct usb_device_id *id_table;
    const struct attribute_group **dev_groups;
    struct usb_dynids dynids;
    struct usbdrv_wrap drvwrap;
    unsigned int no_dynamic_id:1;
    /* if set to 0, the USB core will not allow autosuspend for
     * interfaces bound to this driver */
    unsigned int supports_autosuspend:1;
    /* if set to 1, the USB core will not allow hubs
     * to initiate lower power link state transitions when an idle timeout
     * occurs. Device-initiated USB 3.0 link PM will still be allowed.
     */
    unsigned int disable_hub_initiated_lpm:1;
    /* if set to 1, the USB core will not kill URBs and disable
     * endpoints before calling the driver's disconnect method.
     */
    unsigned int soft_unbind:1;
    ......
};
/*
 * use these in module_init()/module_exit()
 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
 */
extern int usb_register_driver(struct usb_driver *, struct module *,
                   const char *);

/* use a define to avoid include chaining to get THIS_MODULE & friends */
#define usb_register(driver) \
    usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)

extern void usb_deregister(struct usb_driver *);
/**
 * module_usb_driver() - Helper macro for registering a USB driver
 * @__usb_driver: usb_driver struct
 *
 * Helper macro for USB drivers which do not do anything special in module
 * init/exit. This eliminates a lot of boilerplate. Each module may only
 * use this macro once, and calling it replaces module_init() and module_exit()
 */
#define module_usb_driver(__usb_driver) \
    module_driver(__usb_driver, usb_register, usb_deregister)

下面是USB Mass Storage的USB Class Driver定义,使用module_usb_stor_driver宏进行注册。U盘、USB硬盘都使用下面的驱动。

[drivers/usb/storage/usb.c]
#define DRV_NAME "usb-storage"
static struct usb_driver usb_storage_driver = {
    .name                 =        DRV_NAME,
    .probe                =        storage_probe,
    .disconnect           =        usb_stor_disconnect,
    .suspend              =        usb_stor_suspend,
    .resume               =        usb_stor_resume,
    .reset_resume         =        usb_stor_reset_resume,
    .pre_reset            =        usb_stor_pre_reset,
    .post_reset           =        usb_stor_post_reset,
    .id_table             =        usb_storage_usb_ids,
    .supports_autosuspend =     1,
    .soft_unbind          =        1,
};
module_usb_stor_driver(usb_storage_driver, usb_stor_host_template, DRV_NAME);

[drivers/usb/storage/usb.h]
#define module_usb_stor_driver(__driver, __sht, __name) \
static int __init __driver##_init(void) \
{ \
    usb_stor_host_template_init(&(__sht), __name, THIS_MODULE); \
    return usb_register(&(__driver)); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
    usb_deregister(&(__driver)); \
} \
module_exit(__driver##_exit)

3.USB Core(USB Driver)

USB Core(USB Driver)有三个功能,第一是向USB Class Driver提供通信接口,第二是匹配驱动,第三是管理USB Device。

3.1.通信接口

USB Core(USB Driver)层封装了USB Request Block数据结构,即struct urb。USB Class Driver只需要分配并填充struct urb,然后调用通信接口将struct urb提交到USB Core(USB Driver)层即可完成和USB设备的通信。

[include/linux/usb.h]
struct urb {
    /* private: usb core and host controller only fields in the urb */
    struct kref kref;        /* reference count of the URB */
    int unlinked;            /* unlink error code */
    void *hcpriv;            /* private data for host controller */
    atomic_t use_count;        /* concurrent submissions counter */
    atomic_t reject;        /* submissions will fail */

    /* public: documented fields in the urb that can be used by drivers */
    struct list_head urb_list;    /* list head for use by the urb's current owner */
    struct list_head anchor_list;    /* the URB may be anchored */
    struct usb_anchor *anchor;
    struct usb_device *dev;        /* (in) pointer to associated device */
    struct usb_host_endpoint *ep;    /* (internal) pointer to endpoint */
    unsigned int pipe;        /* (in) pipe information */
    unsigned int stream_id;        /* (in) stream ID */
    int status;            /* (return) non-ISO status */
    unsigned int transfer_flags;    /* (in) URB_SHORT_NOT_OK | ...*/
    void *transfer_buffer;        /* (in) associated data buffer */
    dma_addr_t transfer_dma;    /* (in) dma addr for transfer_buffer */
    struct scatterlist *sg;        /* (in) scatter gather buffer list */
    int num_mapped_sgs;        /* (internal) mapped sg entries */
    int num_sgs;            /* (in) number of entries in the sg list */
    u32 transfer_buffer_length;    /* (in) data buffer length */
    u32 actual_length;        /* (return) actual transfer length */
    unsigned char *setup_packet;    /* (in) setup packet (control only) */
    dma_addr_t setup_dma;        /* (in) dma addr for setup_packet */
    int start_frame;        /* (modify) start frame (ISO) */
    int number_of_packets;        /* (in) number of ISO packets */
    int interval;            /* (modify) transfer interval (INT/ISO) */
    int error_count;        /* (return) number of ISO errors */
    void *context;            /* (in) context for completion */
    usb_complete_t complete;    /* (in) completion routine */
    ......
};

主要的通信接口定义如下,包含分配、释放、填充、提交和取消URB。提交URB的接口包含了同步接口和异步接口,异步接口经过封装得到同步接口。内核没有封装ISOC传输类型的同步接口,因此ISOC传输只能使用异步接口。

/* initializes a control urb */
static inline void usb_fill_control_urb(struct urb *urb,
    struct usb_device *dev, unsigned int pipe,
    unsigned char *setup_packet, void *transfer_buffer,
    int buffer_length, usb_complete_t complete_fn, void *context)
{
    ......
}
/* macro to help initialize a bulk urb */
static inline void usb_fill_bulk_urb(struct urb *urb,
    struct usb_device *dev, unsigned int pipe,
    void *transfer_buffer, int buffer_length,
    usb_complete_t complete_fn, void *context)
{
    ......
}
/* macro to help initialize a interrupt urb */
static inline void usb_fill_int_urb(struct urb *urb,
    struct usb_device *dev, unsigned int pipe,
    void *transfer_buffer, int buffer_length,
    usb_complete_t complete_fn, void *context, int interval)
{
    ......
}
extern void usb_init_urb(struct urb *urb);
extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
extern void usb_free_urb(struct urb *urb);

/* issue an asynchronous transfer request for an endpoint */
extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
/* abort/cancel a transfer request for an endpoint */
extern int usb_unlink_urb(struct urb *urb);

/* Builds a control urb, sends it off and waits for completion */
extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
    __u8 request, __u8 requesttype, __u16 value, __u16 index,
    void *data, __u16 size, int timeout);
/* Builds an interrupt urb, sends it off and waits for completion */
extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
    void *data, int len, int *actual_length, int timeout);
/* Builds a bulk urb, sends it off and waits for completion */
extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
    void *data, int len, int *actual_length, int timeout);

通信的目的由pipe表示,pipe的位定义如下所示,其包含了USB设备地址、传输类型、传输方向、端点编号信息。内核提供了一系列定义pipe和解析pipe的宏定义,驱动可以直接使用。

/*
 * For various legacy reasons, Linux has a small cookie that's paired with
 * a struct usb_device to identify an endpoint queue.  Queue characteristics
 * are defined by the endpoint's descriptor.  This cookie is called a "pipe",
 * an unsigned int encoded as:
 *
 *  - direction:    bit 7        (0 = Host-to-Device [Out],
 *                     1 = Device-to-Host [In] ...
 *                    like endpoint bEndpointAddress)
 *  - device address:    bits 8-14       ... bit positions known to uhci-hcd
 *  - endpoint:        bits 15-18      ... bit positions known to uhci-hcd
 *  - pipe type:    bits 30-31    (00 = isochronous, 01 = interrupt,
 *                     10 = control, 11 = bulk)
 *
 * Given the device address and endpoint descriptor, pipes are redundant.
 */

/* NOTE:  these are not the standard USB_ENDPOINT_XFER_* values!! */
/* (yet ... they're the values used by usbfs) */
#define PIPE_ISOCHRONOUS        0
#define PIPE_INTERRUPT            1
#define PIPE_CONTROL            2
#define PIPE_BULK            3

#define usb_pipein(pipe)    ((pipe) & USB_DIR_IN)
#define usb_pipeout(pipe)    (!usb_pipein(pipe))

#define usb_pipedevice(pipe)    (((pipe) >> 8) & 0x7f)
#define usb_pipeendpoint(pipe)    (((pipe) >> 15) & 0xf)

#define usb_pipetype(pipe)    (((pipe) >> 30) & 3)
#define usb_pipeisoc(pipe)    (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
#define usb_pipeint(pipe)    (usb_pipetype((pipe)) == PIPE_INTERRUPT)
#define usb_pipecontrol(pipe)    (usb_pipetype((pipe)) == PIPE_CONTROL)
#define usb_pipebulk(pipe)    (usb_pipetype((pipe)) == PIPE_BULK)

static inline unsigned int __create_pipe(struct usb_device *dev,
        unsigned int endpoint)
{
    return (dev->devnum << 8) | (endpoint << 15);
}

/* Create various pipes... */
#define usb_sndctrlpipe(dev, endpoint)    \
    ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
#define usb_rcvctrlpipe(dev, endpoint)    \
    ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndisocpipe(dev, endpoint)    \
    ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
#define usb_rcvisocpipe(dev, endpoint)    \
    ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndbulkpipe(dev, endpoint)    \
    ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
#define usb_rcvbulkpipe(dev, endpoint)    \
    ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
#define usb_sndintpipe(dev, endpoint)    \
    ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
#define usb_rcvintpipe(dev, endpoint)    \
    ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)

创建pipe需要两个参数,一个是struct usb_deviceendpointendpoint为端点描述符中的bEndpointAddress。当USB Class Driver的probe函数被调用时,内核会传入一个和该驱动匹配成功的接口的数据结构,即struct usb_interface。驱动可以通过interface_to_usbdev函数从struct usb_interface获取struct usb_device,endpoint通过usb_find_xx系列函数中获取(ISOC传输需要驱动自己从struct usb_host_interface数据结构中解析)。

[include/linux/usb.h]
struct usb_interface {
    /* array of alternate settings for this interface,
     * stored in no particular order */
    struct usb_host_interface *altsetting;

    struct usb_host_interface *cur_altsetting;    /* the currently
                     * active alternate setting */
    unsigned num_altsetting;    /* number of alternate settings */

    /* If there is an interface association descriptor then it will list
     * the associated interfaces */
    struct usb_interface_assoc_descriptor *intf_assoc;

    int minor;            /* minor number this interface is bound to */
    enum usb_interface_condition condition;        /* state of binding */
    unsigned sysfs_files_created:1;    /* the sysfs attributes exist */
    unsigned ep_devs_created:1;    /* endpoint "devices" exist */
    unsigned unregistering:1;    /* unregistration is in progress */
    unsigned needs_remote_wakeup:1;    /* driver requires remote wakeup */
    unsigned needs_altsetting0:1;    /* switch to altsetting 0 is pending */
    unsigned needs_binding:1;    /* needs delayed unbind/rebind */
    unsigned resetting_device:1;    /* true: bandwidth alloc after reset */
    unsigned authorized:1;        /* used for interface authorization */

    struct device dev;        /* interface specific device info */
    struct device *usb_dev;
    struct work_struct reset_ws;    /* for resets in atomic context */
    ......
};
#define    to_usb_device(d) container_of(d, struct usb_device, dev)

static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
{
    return to_usb_device(intf->dev.parent);
}
int __must_check
usb_find_common_endpoints(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_in,
        struct usb_endpoint_descriptor **bulk_out,
        struct usb_endpoint_descriptor **int_in,
        struct usb_endpoint_descriptor **int_out);

int __must_check
usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_in,
        struct usb_endpoint_descriptor **bulk_out,
        struct usb_endpoint_descriptor **int_in,
        struct usb_endpoint_descriptor **int_out);

static inline int __must_check
usb_find_bulk_in_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_in)
{
    return usb_find_common_endpoints(alt, bulk_in, NULL, NULL, NULL);
}

static inline int __must_check
usb_find_bulk_out_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_out)
{
    return usb_find_common_endpoints(alt, NULL, bulk_out, NULL, NULL);
}

static inline int __must_check
usb_find_int_in_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **int_in)
{
    return usb_find_common_endpoints(alt, NULL, NULL, int_in, NULL);
}

static inline int __must_check
usb_find_int_out_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **int_out)
{
    return usb_find_common_endpoints(alt, NULL, NULL, NULL, int_out);
}

static inline int __must_check
usb_find_last_bulk_in_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_in)
{
    return usb_find_common_endpoints_reverse(alt, bulk_in, NULL, NULL, NULL);
}

static inline int __must_check
usb_find_last_bulk_out_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **bulk_out)
{
    return usb_find_common_endpoints_reverse(alt, NULL, bulk_out, NULL, NULL);
}

static inline int __must_check
usb_find_last_int_in_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **int_in)
{
    return usb_find_common_endpoints_reverse(alt, NULL, NULL, int_in, NULL);
}

static inline int __must_check
usb_find_last_int_out_endpoint(struct usb_host_interface *alt,
        struct usb_endpoint_descriptor **int_out)
{
    return usb_find_common_endpoints_reverse(alt, NULL, NULL, NULL, int_out);
}

3.2.匹配驱动和设备及接口

USB Class Driver和USB设备接口、USB设备和USB Core(USB Driver)都是通过struct usb_device_id中的信息进行匹配。struct usb_device_id定义了4中匹配方式,第一种是产品信息匹配,通常情况使用VID和PID;第二种是根据设备类信息进行匹配;第三种根据接口的类信息进行匹配,第四种根据厂家自定义的接口进行匹配。具体使用那种匹配方式,由match_flags决定,内核定义了USB_DEVICE_ID_xx开头的宏,用来设置match_flags

USB Class Driver和USB设备接口、USB设备和USB Core(USB Driver)的匹配工作由usb_bus_type中的usb_device_match函数完成,该函数会进一步调用usb_match_id进行匹配。

[include/linux/mod_devicetable.h]
struct usb_device_id {
    /* which fields to match against? */
    __u16        match_flags;

    /* Used for product specific matches; range is inclusive */
    __u16        idVendor;
    __u16        idProduct;
    __u16        bcdDevice_lo;
    __u16        bcdDevice_hi;

    /* Used for device class matches */
    __u8        bDeviceClass;
    __u8        bDeviceSubClass;
    __u8        bDeviceProtocol;

    /* Used for interface class matches */
    __u8        bInterfaceClass;
    __u8        bInterfaceSubClass;
    __u8        bInterfaceProtocol;

    /* Used for vendor-specific interface matches */
    __u8        bInterfaceNumber;

    /* not matched against */
    kernel_ulong_t    driver_info
        __attribute__((aligned(sizeof(kernel_ulong_t))));
};
/* Some useful macros to use to create struct usb_device_id */
#define USB_DEVICE_ID_MATCH_VENDOR            0x0001
#define USB_DEVICE_ID_MATCH_PRODUCT            0x0002
#define USB_DEVICE_ID_MATCH_DEV_LO            0x0004
#define USB_DEVICE_ID_MATCH_DEV_HI            0x0008
#define USB_DEVICE_ID_MATCH_DEV_CLASS        0x0010
#define USB_DEVICE_ID_MATCH_DEV_SUBCLASS    0x0020
#define USB_DEVICE_ID_MATCH_DEV_PROTOCOL    0x0040
#define USB_DEVICE_ID_MATCH_INT_CLASS        0x0080
#define USB_DEVICE_ID_MATCH_INT_SUBCLASS    0x0100
#define USB_DEVICE_ID_MATCH_INT_PROTOCOL    0x0200
#define USB_DEVICE_ID_MATCH_INT_NUMBER        0x0400

[include/linux/usb.h]
#define USB_DEVICE_ID_MATCH_DEVICE \
        (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
#define USB_DEVICE_ID_MATCH_DEV_RANGE \
        (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
        (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
#define USB_DEVICE_ID_MATCH_DEV_INFO \
        (USB_DEVICE_ID_MATCH_DEV_CLASS | \
        USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
        USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
#define USB_DEVICE_ID_MATCH_INT_INFO \
        (USB_DEVICE_ID_MATCH_INT_CLASS | \
        USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
        USB_DEVICE_ID_MATCH_INT_PROTOCOL)

/**
 * USB_DEVICE - macro used to describe a specific usb device
 * @vend: the 16 bit USB Vendor ID
 * @prod: the 16 bit USB Product ID
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific device.
 */
#define USB_DEVICE(vend, prod) \
    .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
    .idVendor = (vend), \
    .idProduct = (prod)

/**
 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
 * @cl: bInterfaceClass value
 * @sc: bInterfaceSubClass value
 * @pr: bInterfaceProtocol value
 *
 * This macro is used to create a struct usb_device_id that matches a
 * specific class of interfaces.
 */
#define USB_INTERFACE_INFO(cl, sc, pr) \
    .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
    .bInterfaceClass = (cl), \
    .bInterfaceSubClass = (sc), \
    .bInterfaceProtocol = (pr)
......

const struct usb_device_id *usb_match_id(struct usb_interface *interface,
                     const struct usb_device_id *id);
extern struct bus_type usb_bus_type;

[drivers/usb/core/driver.c]
struct bus_type usb_bus_type = {
    .name             =        "usb",
    .match            =        usb_device_match,
    .uevent           =        usb_uevent,
    .need_parent_lock =        true,
};

struct usb_driver定义的USB Class Driver驱动和USB设备的接口匹配,而struct usb_device_driver定义的驱动和USB设备匹配,使用usb_register_device_driverusb_deregister_device_driver函数注册和注销struct usb_device_driver。内核提供了通用的struct usb_device_driver,即usb_generic_driver,在USB子系统初始化的时候注册到系统中,通常情况下USB Class Driver无需再提供struct usb_device_driver

[include/linux/usb.h]
struct usb_device_driver {
    const char *name;
    /* If set, used for better device/driver matching. */
    bool (*match) (struct usb_device *udev);
    /* Called to see if the driver is willing to manage a particular
     * device.  If it is, probe returns zero and uses dev_set_drvdata()
     * to associate driver-specific data with the device.  If unwilling
     * to manage the device, return a negative errno value. 
     */
    int (*probe) (struct usb_device *udev);
    /* Called when the device is no longer accessible, usually
     * because it has been (or is being) disconnected or the driver's
     * module is being unloaded.
     */
    void (*disconnect) (struct usb_device *udev);

    int (*suspend) (struct usb_device *udev, pm_message_t message);
    int (*resume) (struct usb_device *udev, pm_message_t message);
    const struct attribute_group **dev_groups;
    struct usbdrv_wrap drvwrap;
    /* used with @match() to select better matching driver at probe() time.
     */
    const struct usb_device_id *id_table;
    unsigned int supports_autosuspend:1;
    unsigned int generic_subclass:1;
};

extern int usb_register_device_driver(struct usb_device_driver *,
        struct module *);
extern void usb_deregister_device_driver(struct usb_device_driver *);
extern struct usb_device_driver usb_generic_driver;

[drivers/usb/core/generic.c]
struct usb_device_driver usb_generic_driver = {
    .name       =    "usb",
    .match      =    usb_generic_driver_match,
    .probe      =    usb_generic_driver_probe,
    .disconnect =    usb_generic_driver_disconnect,
#ifdef    CONFIG_PM
    .suspend    =    usb_generic_driver_suspend,
    .resume     =    usb_generic_driver_resume,
#endif
    .supports_autosuspend = 1,
};

3.3.管理设备

USB Core(USB Driver)使用struct usb_device数据结构描述USB设备。该数据结构在系统枚举USB设备的时候,由usb_alloc_dev函数分配和usb_new_device初始化。

[include/linux/usb.h]
struct usb_device {
    /* device number; address on a USB bus */
    int        devnum;
    /* device ID string for use in messages (e.g., /port/...) */
    char        devpath[16];
    /* tree topology hex string for use with xHCI */
    u32        route;
    /* device state: configured, not attached, etc. */
    enum usb_device_state    state;
    /* device speed: high/full/low (or error) */
    enum usb_device_speed    speed;
    /* number of rx lanes in use, USB 3.2 adds dual-lane support */
    unsigned int        rx_lanes;
    /* number of tx lanes in use, USB 3.2 adds dual-lane support */
    unsigned int        tx_lanes;
    /* Transaction Translator info; used with low/full speed dev,
     * highspeed hub 
     */
    struct usb_tt    *tt;
    int        ttport; /* device port on that tt hub */
    /* one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints */
    unsigned int toggle[2];
    /* our hub, unless we're the root */
    struct usb_device *parent;
    struct usb_bus *bus; /* bus we're part of */
    /* endpoint 0 data (default control pipe) */
    struct usb_host_endpoint ep0;
    struct device dev; /* generic device interface */
    /* USB device descriptor */
    struct usb_device_descriptor descriptor;
    struct usb_host_bos *bos;
    /* all of the device's configs */
    struct usb_host_config *config;
    /* the active configuration */
    struct usb_host_config *actconfig;
    struct usb_host_endpoint *ep_in[16]; /* array of IN endpoints */
    struct usb_host_endpoint *ep_out[16]; /* array of OUT endpoints */
    char **rawdescriptors; /* raw descriptors for each config */
    /* Current available from the bus */
    unsigned short bus_mA;
    u8 portnum; /* parent port number (origin 1) */
    u8 level; /* number of USB hub ancestors */
    /* device address, XHCI: assigned by HW, others: same as devnum */
    u8 devaddr;
    ......
    /* ask driver core to reprobe using the generic driver */
    unsigned use_generic_driver:1;
    ......
};

[include/linux/usb/hcd.h]
/* Enumeration is only for the hub driver, or HCD virtual root hubs */
/* usb device constructor (usbcore-internal) */
extern struct usb_device *usb_alloc_dev(struct usb_device *parent,
        struct usb_bus *, unsigned port);
/* perform initial device setup (usbcore-internal) */
extern int usb_new_device(struct usb_device *dev);
/* disconnect a device (usbcore-internal) */
void usb_disconnect(struct usb_device **pdev);

4. USB Host Controller Driver

Linux内核使用struct usb_hcd数据结构描述USB Host Controller Driver,使用struct hc_driver描述USB Host Controller的操作方法,比如通信接口usb_submit_urb最终会调用到urb_enqueue函数,不同接口协议的USB Host Controller需要提供不同的struct hc_driver。使用usb_create_hcd__usb_create_hcd函数创建struct usb_hcd,使用usb_add_hcd函数添加struct usb_hcd,使用usb_remove_hcd移除struct usb_hcd

[include/linux/usb/hcd.h]
struct usb_hcd {
    struct usb_bus  self;  /* hcd is-a bus */
    struct kref        kref;  /* reference counter */
    const char        *product_desc;    /* product/vendor string */
    int            speed;  /* Speed for this roothub. */
    char            irq_descr[24];    /* driver + bus # */
    struct timer_list    rh_timer;    /* drives root-hub polling */
    struct urb        *status_urb;    /* the current status urb */
#ifdef CONFIG_PM
    struct work_struct    wakeup_work;    /* for remote wakeup */
#endif
    struct work_struct    died_work;    /* for when the device dies */
    /* hardware info/state */
    const struct hc_driver    *driver;    /* hw-specific hooks */
    /* OTG and some Host controllers need software interaction with phys;
     * other external phys should be software-transparent
     */
    struct usb_phy        *usb_phy;
    struct usb_phy_roothub    *phy_roothub;
    ......

    /* bandwidth_mutex should be taken before adding or removing
     * any new bus bandwidth constraints:
     *   1. Before adding a configuration for a new device.
     *   2. Before removing the configuration to put the device into
     *      the addressed state.
     *   3. Before selecting a different configuration.
     *   4. Before selecting an alternate interface setting.
     *
     * bandwidth_mutex should be dropped after a successful control message
     * to the device, or resetting the bandwidth after a failed attempt.
     */
    struct mutex        *address0_mutex;
    struct mutex        *bandwidth_mutex;
    struct usb_hcd        *shared_hcd;
    struct usb_hcd        *primary_hcd;
    ......
};

struct hc_driver {
    const char    *description;    /* "ehci-hcd" etc */
    const char    *product_desc;    /* product/vendor string */
    size_t        hcd_priv_size;    /* size of private data */
    /* irq handler */
    irqreturn_t    (*irq) (struct usb_hcd *hcd);
    ......
    /* called to init HCD and root hub */
    int    (*reset) (struct usb_hcd *hcd);
    int    (*start) (struct usb_hcd *hcd);
    /* NOTE:  these suspend/resume calls relate to the HC as
     * a whole, not just the root hub; they're for PCI bus glue.
     */
    /* called after suspending the hub, before entering D3 etc */
    int    (*pci_suspend)(struct usb_hcd *hcd, bool do_wakeup);
    /* called after entering D0 (etc), before resuming the hub */
    int    (*pci_resume)(struct usb_hcd *hcd, bool hibernated);
    /* cleanly make HCD stop writing memory and doing I/O */
    void    (*stop) (struct usb_hcd *hcd);
    /* shutdown HCD */
    void    (*shutdown) (struct usb_hcd *hcd);
    /* return current frame number */
    int    (*get_frame_number) (struct usb_hcd *hcd);
    /* manage i/o requests, device state */
    int    (*urb_enqueue)(struct usb_hcd *hcd,
                struct urb *urb, gfp_t mem_flags);
    int    (*urb_dequeue)(struct usb_hcd *hcd,
                struct urb *urb, int status);
    /*
     * (optional) these hooks allow an HCD to override the default DMA
     * mapping and unmapping routines.  In general, they shouldn't be
     * necessary unless the host controller has special DMA requirements,
     * such as alignment contraints.  If these are not specified, the
     * general usb_hcd_(un)?map_urb_for_dma functions will be used instead
     * (and it may be a good idea to call these functions in your HCD
     * implementation)
     */
    int    (*map_urb_for_dma)(struct usb_hcd *hcd, struct urb *urb,
                   gfp_t mem_flags);
    void    (*unmap_urb_for_dma)(struct usb_hcd *hcd, struct urb *urb);
    /* hw synch, freeing endpoint resources that urb_dequeue can't */
    void    (*endpoint_disable)(struct usb_hcd *hcd,
            struct usb_host_endpoint *ep);
    /* (optional) reset any endpoint state such as sequence number
       and current window */
    void    (*endpoint_reset)(struct usb_hcd *hcd,
            struct usb_host_endpoint *ep);
    /* root hub support */
    int    (*hub_status_data) (struct usb_hcd *hcd, char *buf);
    int    (*hub_control) (struct usb_hcd *hcd,
        u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength);
    int    (*bus_suspend)(struct usb_hcd *);
    int    (*bus_resume)(struct usb_hcd *);
    int    (*start_port_reset)(struct usb_hcd *, unsigned port_num);
    unsigned long    (*get_resuming_ports)(struct usb_hcd *);

    /* force handover of high-speed port to full-speed companion */
    void    (*relinquish_port)(struct usb_hcd *, int);
    /* has a port been handed over to a companion? */
    int    (*port_handed_over)(struct usb_hcd *, int);
    /* CLEAR_TT_BUFFER completion callback */
    void    (*clear_tt_buffer_complete)(struct usb_hcd *,
            struct usb_host_endpoint *);
    /* xHCI specific functions */
    /* Called by usb_alloc_dev to alloc HC device structures */
    int    (*alloc_dev)(struct usb_hcd *, struct usb_device *);
    /* Called by usb_disconnect to free HC device structures */
    void    (*free_dev)(struct usb_hcd *, struct usb_device *);
    /* Change a group of bulk endpoints to support multiple stream IDs */
    int    (*alloc_streams)(struct usb_hcd *hcd, struct usb_device *udev,
        struct usb_host_endpoint **eps, unsigned int num_eps,
        unsigned int num_streams, gfp_t mem_flags);
    /* Reverts a group of bulk endpoints back to not using stream IDs.
     * Can fail if we run out of memory.
     */
    int    (*free_streams)(struct usb_hcd *hcd, struct usb_device *udev,
        struct usb_host_endpoint **eps, unsigned int num_eps,
        gfp_t mem_flags);

    /* Bandwidth computation functions */
    /* Note that add_endpoint() can only be called once per endpoint before
     * check_bandwidth() or reset_bandwidth() must be called.
     * drop_endpoint() can only be called once per endpoint also.
     * A call to xhci_drop_endpoint() followed by a call to
     * xhci_add_endpoint() will add the endpoint to the schedule with
     * possibly new parameters denoted by a different endpoint descriptor
     * in usb_host_endpoint.  A call to xhci_add_endpoint() followed by a
     * call to xhci_drop_endpoint() is not allowed.
     */
        /* Allocate endpoint resources and add them to a new schedule */
    int    (*add_endpoint)(struct usb_hcd *, struct usb_device *,
                struct usb_host_endpoint *);
        /* Drop an endpoint from a new schedule */
    int    (*drop_endpoint)(struct usb_hcd *, struct usb_device *,
                 struct usb_host_endpoint *);
        /* Check that a new hardware configuration, set using
         * endpoint_enable and endpoint_disable, does not exceed bus
         * bandwidth.  This must be called before any set configuration
         * or set interface requests are sent to the device.
         */
    int    (*check_bandwidth)(struct usb_hcd *, struct usb_device *);
        /* Reset the device schedule to the last known good schedule,
         * which was set from a previous successful call to
         * check_bandwidth().  This reverts any add_endpoint() and
         * drop_endpoint() calls since that last successful call.
         * Used for when a check_bandwidth() call fails due to resource
         * or bandwidth constraints.
         */
    void    (*reset_bandwidth)(struct usb_hcd *, struct usb_device *);
        /* Returns the hardware-chosen device address */
    int    (*address_device)(struct usb_hcd *, struct usb_device *udev);
        /* prepares the hardware to send commands to the device */
    int    (*enable_device)(struct usb_hcd *, struct usb_device *udev);
        /* Notifies the HCD after a hub descriptor is fetched.
         * Will block.
         */
    int    (*update_hub_device)(struct usb_hcd *, struct usb_device *hdev,
            struct usb_tt *tt, gfp_t mem_flags);
    int    (*reset_device)(struct usb_hcd *, struct usb_device *);
        /* Notifies the HCD after a device is connected and its
         * address is set
         */
    int    (*update_device)(struct usb_hcd *, struct usb_device *);
    int    (*set_usb2_hw_lpm)(struct usb_hcd *, struct usb_device *, int);
    /* USB 3.0 Link Power Management */
        /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
    int    (*enable_usb3_lpm_timeout)(struct usb_hcd *,
            struct usb_device *, enum usb3_link_state state);
        /* The xHCI host controller can still fail the command to
         * disable the LPM timeouts, so this can return an error code.
         */
    int    (*disable_usb3_lpm_timeout)(struct usb_hcd *,
            struct usb_device *, enum usb3_link_state state);
    int    (*find_raw_port_number)(struct usb_hcd *, int);
    /* Call for power on/off the port if necessary */
    int    (*port_power)(struct usb_hcd *hcd, int portnum, bool enable);
    ......
};

struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
        struct device *sysdev, struct device *dev, const char *bus_name,
        struct usb_hcd *primary_hcd);
/* create and initialize an HCD structure */
extern struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
        struct device *dev, const char *bus_name);
/* finish generic HCD structure initialization and register */
extern int usb_add_hcd(struct usb_hcd *hcd,
        unsigned int irqnum, unsigned long irqflags);
/* shutdown processing for generic HCDs */
extern void usb_remove_hcd(struct usb_hcd *hcd);

xHCI、EHCI、OHCI三种接口协议标准的USB Host Controller Driver的struct hc_driver定义如下。

[drivers/usb/host/xhci.c]
static const struct hc_driver xhci_hc_driver = {
    .description   =  "xhci-hcd",
    .product_desc  =  "xHCI Host Controller",
    .hcd_priv_size =  sizeof(struct xhci_hcd),
    /* generic hardware linkage */
    .irq      = xhci_irq,
    .flags    = HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED | HCD_BH,
    /* basic lifecycle operations */
    .reset    = NULL,     /* xhci_plat_setup */
    .start    = xhci_run, /* xhci_plat_start */
    .stop     = xhci_stop,
    .shutdown = xhci_shutdown,
    /* managing i/o requests and associated device resources */
    .map_urb_for_dma    =     xhci_map_urb_for_dma,
    .urb_enqueue        =     xhci_urb_enqueue,
    .urb_dequeue        =     xhci_urb_dequeue,
    .alloc_dev          =     xhci_alloc_dev,
    .free_dev           =     xhci_free_dev,
    .alloc_streams      =     xhci_alloc_streams,
    .free_streams       =     xhci_free_streams,
    .add_endpoint       =     xhci_add_endpoint,
    .drop_endpoint      =     xhci_drop_endpoint,
    .endpoint_disable   =     xhci_endpoint_disable,
    .endpoint_reset     =     xhci_endpoint_reset,
    .check_bandwidth    =     xhci_check_bandwidth,
    .reset_bandwidth    =     xhci_reset_bandwidth,
    .address_device     =     xhci_address_device,
    .enable_device      =     xhci_enable_device,
    .update_hub_device  =     xhci_update_hub_device,
    .reset_device       =     xhci_discover_or_reset_device,
    /* scheduling support */
    .get_frame_number         =   xhci_get_frame,
    /* root hub support */
    .hub_control              =   xhci_hub_control,
    .hub_status_data          =   xhci_hub_status_data,
    .bus_suspend              =   xhci_bus_suspend,
    .bus_resume               =   xhci_bus_resume,
    .get_resuming_ports       =   xhci_get_resuming_ports,
    /* call back when device connected and addressed */
    .update_device            =   xhci_update_device,
    .set_usb2_hw_lpm          =   xhci_set_usb2_hardware_lpm,
    .enable_usb3_lpm_timeout  =   xhci_enable_usb3_lpm_timeout,
    .disable_usb3_lpm_timeout =   xhci_disable_usb3_lpm_timeout,
    .find_raw_port_number     =   xhci_find_raw_port_number,
    .clear_tt_buffer_complete =   xhci_clear_tt_buffer_complete,
};

[drivers/usb/host/ehci-hcd.c]
static const struct hc_driver ehci_hc_driver = {
    .description              =    hcd_name,
    .product_desc             =    "EHCI Host Controller",
    .hcd_priv_size            =    sizeof(struct ehci_hcd),
    /* generic hardware linkage */
    .irq                      =    ehci_irq,
    .flags                    =    HCD_MEMORY | HCD_DMA | HCD_USB2 | HCD_BH,
    /* basic lifecycle operations */
    .reset                    =    ehci_setup,
    .start                    =    ehci_run,
    .stop                     =    ehci_stop,
    .shutdown                 =    ehci_shutdown,
    /* managing i/o requests and associated device resources */
    .urb_enqueue              =    ehci_urb_enqueue,
    .urb_dequeue              =    ehci_urb_dequeue,
    .endpoint_disable         =    ehci_endpoint_disable,
    .endpoint_reset           =    ehci_endpoint_reset,
    .clear_tt_buffer_complete =    ehci_clear_tt_buffer_complete,
    /* scheduling support */
    .get_frame_number         =    ehci_get_frame,
    /* root hub support */
    .hub_status_data          =    ehci_hub_status_data,
    .hub_control              =    ehci_hub_control,
    .bus_suspend              =    ehci_bus_suspend,
    .bus_resume               =    ehci_bus_resume,
    .relinquish_port          =    ehci_relinquish_port,
    .port_handed_over         =    ehci_port_handed_over,
    .get_resuming_ports       =    ehci_get_resuming_ports,
    /* device support */
    .free_dev                 =    ehci_remove_device,
};

[drivers/usb/host/ohci-hcd.c]
static const struct hc_driver ohci_hc_driver = {
    .description      =   hcd_name,
    .product_desc     =   "OHCI Host Controller",
    .hcd_priv_size    =   sizeof(struct ohci_hcd),
    /* generic hardware linkage */
    .irq              =   ohci_irq,
    .flags            =   HCD_MEMORY | HCD_DMA | HCD_USB11,
    /* basic lifecycle operations */
    .reset            =   ohci_setup,
    .start            =   ohci_start,
    .stop             =   ohci_stop,
    .shutdown         =   ohci_shutdown,
    /* managing i/o requests and associated device resources */
    .urb_enqueue      =   ohci_urb_enqueue,
    .urb_dequeue      =   ohci_urb_dequeue,
    .endpoint_disable =   ohci_endpoint_disable,
    /* scheduling support */
    .get_frame_number =   ohci_get_frame,
    /* root hub support */
    .hub_status_data  =   ohci_hub_status_data,
    .hub_control      =   ohci_hub_control,
#ifdef CONFIG_PM
    .bus_suspend      =   ohci_bus_suspend,
    .bus_resume       =   ohci_bus_resume,
#endif
    .start_port_reset =   ohci_start_port_reset,
};

5. USB子系统

Linux内核主机USB子系统的初始化入口如下所示,注册了usb_bus_typeusbfs_driverusb_generic_driver,初始化了USB设备的设备号、hub等。

[drivers\usb\core\usb.c]
static int __init usb_init(void)
{
    ......
    retval = bus_register(&usb_bus_type);
    if (retval)
        goto bus_register_failed;
    retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
    if (retval)
        goto bus_notifier_failed;
    retval = usb_major_init();
    if (retval)
        goto major_init_failed;
    retval = usb_register(&usbfs_driver);
    if (retval)
        goto driver_register_failed;
    retval = usb_devio_init();
    if (retval)
        goto usb_devio_init_failed;
    retval = usb_hub_init();
    if (retval)
        goto hub_init_failed;
    retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
    if (!retval)
        goto out;
    ......
}
static void __exit usb_exit(void)
{
    ......
    usb_release_quirk_list();
    usb_deregister_device_driver(&usb_generic_driver);
    usb_major_cleanup();
    usb_deregister(&usbfs_driver);
    usb_devio_cleanup();
    usb_hub_cleanup();
    bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
    bus_unregister(&usb_bus_type);
    usb_acpi_unregister();
    usb_debugfs_cleanup();
    idr_destroy(&usb_bus_idr);
}
subsys_initcall(usb_init);
module_exit(usb_exit);

标签:usb,int,USB,USB3.0,hcd,Linux,device,struct
From: https://www.cnblogs.com/linhaostudy/p/18411840

相关文章

  • Linux apt 命令详解
    apt(AdvancedPackagingTool)是一个在Debian和Ubuntu中的Shell前端软件包管理器。apt命令提供了查找、安装、升级、删除某一个、一组甚至全部软件包的命令,而且命令简洁而又好记。apt命令执行需要超级管理员权限(root)。apt语法 apt[options][command][package......
  • Linux:dirname和basename
    学习自:dirname命令-简书 1、dirname用法dirname文件/目录路径支持多个文件路径用途输出文件/目录所在的目录。用在shell脚本中常配合$0代表脚本路径。例子dirname/usr/local/p1.img/usr/localdirname/usr/local/p1.img/usr/local/p2.png/usr/local/usr/lo......
  • 本地Linux服务器安装Nginx流程结合内网穿透实现无公网IP远程连接
    文章目录前言1.安装Docker2.使用Docker拉取Nginx镜像3.创建并启动Nginx容器4.本地连接测试5.公网远程访问本地Nginx5.1内网穿透工具安装5.2创建远程连接公网地址5.3使用固定公网地址远程访问前言在开发人员的工作中,公网远程访问内网是其必备的技术需求之一......
  • Linux 运维工程师面试技术问题及答案指南
    Linux运维工程师的角色在IT行业中至关重要,他们负责维护、监控和优化Linux系统的运行。为了帮助求职者更好地准备面试,本文将列出一些常见的面试问题,并提供相应的答案。1.Linux系统管理问题:Linux支持哪些文件系统?如何管理它们?答案:Linux支持多种文件系统,包括但不......
  • Linux Selinux详解
    介绍LinuxSELinux是一种安全增强的Linux,它可以让用户和管理员对访问控制有更多的控制。它是一种标签机制,可以对文件和其他对象提供高级别的安全保护,防止未授权的进程或者没有必要访问的授权进程进行滥用。SELinux最初是由美国国家安全局(NSA)开发的,作为一系列使用Linux安全......
  • Linux 运维三剑客:grep、sed 和 awk 实战案例与命令参数详解
    在Linux运维中,grep、sed和awk是三个非常强大的文本处理工具,它们在处理文本数据时发挥着重要作用。本文将通过一些实战案例,展示这三个工具的使用方法和强大功能,并对它们的命令参数进行详解。grep:文本搜索利器grep是一个强大的文本搜索工具,它使用正则表达式来匹配文本......
  • Linux调试器--gdb/cgdb
    ......
  • Linux编译器-gcc/g++使用
    1.背景知识1.预处理(进行宏替换)2.编译(生成汇编)3.汇编(生成机器可识别代码)4.连接(生成可执行文件或库文件)2.gcc如何完成格式gcc[选项]要编译的文件[选项][目标文件]预处理(进行宏替换)编译(生成汇编)汇编(生成机器可识别代码)连接(生成可执行文件或库文件)......
  • ##嵌入式学习之Linux系统编程##--标准I/O函数
    day01主要内容:linux系统下一切皆文件标准IO---标准库文件IO---系统调用制作库---静态库、动态库基本概念:标准I/O:文件:一组相关数据的有序集合。文件名:这个数据集合的名称。文件类型:lsp-bcd系统调用用户空间进程访问内核的接口把用户从底层的硬件编程......
  • 在 Linux 系统中设置 Python 虚拟环境
    安装venv模块(如果尚未安装):sudoapt-getinstallpython3-venvsudo:以超级用户权限运行命令。apt-getinstall:使用包管理器安装软件包。python3-venv:要安装的具体软件包名称,这个包提供了创建虚拟环境的工具。创建虚拟环境:在你的项目目录中运行以下命令来创建虚拟环境(例......