首页 > 系统相关 >Linux 并发与竞争实验学习

Linux 并发与竞争实验学习

时间:2024-06-15 20:11:49浏览次数:26  
标签:led struct dev 并发 实验 Linux return include gpioled

Linux 并发与竞争实验学习

原子操作实验

这里原子操作就是采用原子变量来保护一个程序运行的完整过程,使用atomic 来实现一次只能允许一个应用访问 LED,创建atomic.c文件,其实改动内容就是添加原子变量,
要在设备结构体数据添加原子变量,具体代码如下:

struct gpioled_dev
{
    dev_t devid;            /* 设备号 */
    struct cdev cdev;       /* cdev */
    struct class *class;    /* 类 */
    struct device *device;  /* 设备 */
    int major;              /* 主设备号 */
    int minor;              /* 次设备号 */
    struct device_node *nd; /* 设备节点 */
    int led_gpio;           /* led 所使用的 GPIO 编号 */
    atomic_t lock;          /* 原子变量 */
};

首先是这个函数led_init
这个函数要先初始化原子变量,以便于首次运行APP检查原子变量不出错。这里是初始化为1.

atomic_set(&gpioled.lock, 1); /* 原子变量初始值为 1 */

然后open函数检查原子变量的值,具体代码如下:

if (!atomic_dec_and_test(&gpioled.lock))
{
    atomic_inc(&gpioled.lock); /* 小于 0 的话就加 1,使其原子变量等于 0 */
    return -EBUSY;             /* LED 被使用,返回忙 */
}

每次打开驱动设备的时候先使用 atomic_dec_and_test 函数将 lock 减 1,如果 atomic_dec_and_test函数返回值为真就表示 lock 当前值为 0,说明设备可以使用。如果 atomic_dec_and_test 函数返回值为假,就表示 lock 当前值为负数(lock 值默认是 1), lock 值为负数的可能性只有一个,那就是其他设备正在使用 LED。其他设备正在使用 LED 灯,那么就只能退出了,在退出之前调用函数 atomic_inc 将 lock 加 1,因为此时 lock 的值被减成了负数,必须要对其加 1,将 lock 的值变为 0。

static int led_release(struct inode *inode, struct file *filp)
{
    struct gpioled_dev *dev = filp->private_data;
    /* 关闭驱动文件的时候释放原子变量 */
    atomic_inc(&dev->lock);
    return 0;
}

然后还要模拟占用LED25秒,atomicApp.c程序具体如下:

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"

#define LEDOFF 0
#define LEDON 1
int main(int argc, char *argv[])
{
    int fd, retvalue;
    char *filename;
    unsigned char cnt = 0;
    unsigned char databuf[1];
    if (argc != 3)
    {
        printf("Error Usage!\r\n");
        return -1;
    }
    filename = argv[1];
    fd = open(filename, O_RDWR);
    if (fd < 0)
    {
        printf("file %s open failed!\r\n", argv[1]);
        return -1;
    }
    databuf[0] = atoi(argv[2]); /* 要执行的操作:打开或关闭 */
    /* 向/dev/gpioled 文件写入数据 */
    retvalue = write(fd, databuf, sizeof(databuf));
    if (retvalue < 0)
    {
        printf("LED Control Failed!\r\n");
        close(fd);
        return -1;
    }
    while (1)
    {
        sleep(5);
        cnt++;
        printf("App running times:%d\r\n", cnt);
        if (cnt >= 5)
            break;
    }
    printf("App running finished!");
    retvalue = close(fd); /* 关闭文件 */
    if (retvalue < 0)
    {
        printf("file %s close failed!\r\n", argv[1]);
        return -1;
    }
    return 0;
}

测试 APP 在获取到 LED 灯驱动的使用权以后会使用 25S。编译程序,通过网络挂载,测试原子操作。
在这里插入图片描述
出现如图则证明成功。

自旋锁实验

①、自旋锁保护的临界区要尽可能的短,因此在 open 函数中申请自旋锁,然后在 release 函
数中释放自旋锁的方法就不可取。我们可以使用一个变量来表示设备的使用情况,如果设备被
使用了那么变量就加一,设备被释放以后变量就减 1,我们只需要使用自旋锁保护这个变量即
可。
②、考虑驱动的兼容性,合理的选择 API 函数。
具体驱动程序为:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>

#define GPIOLED_CNT 1          /* 设备号个数 */
#define GPIOLED_NAME "gpioled" /* 名字 */
#define LEDOFF 0               /* 关灯 */
#define LEDON 1                /* 开灯 */
                               /* gpioled 设备结构体 */
struct gpioled_dev
{
    dev_t devid;            /* 设备号 */
    struct cdev cdev;       /* cdev */
    struct class *class;    /* 类 */
    struct device *device;  /* 设备 */
    int major;              /* 主设备号 */
    int minor;              /* 次设备号 */
    struct device_node *nd; /* 设备节点 */
    int led_gpio;           /* led 所使用的 GPIO 编号 */
    int dev_stats;          /* 设备状态, 0,设备未使用;>0,设备已经被使用 */
    spinlock_t lock;        /* 自旋锁变量 */
};
struct gpioled_dev gpioled; /* led 设备 */
static int led_open(struct inode *inode, struct file *filp)
{
    unsigned long flags;
    filp->private_data = &gpioled;           /* 设置私有数据 */
    spin_lock_irqsave(&gpioled.lock, flags); /* 上锁 */
    if (gpioled.dev_stats)
    {                                                 /* 如果设备被使用了 */
        spin_unlock_irqrestore(&gpioled.lock, flags); /* 解锁 */
        return -EBUSY;
    }
    gpioled.dev_stats++;                          /* 如果设备没有打开,那么就标记已经打开了 */
    spin_unlock_irqrestore(&gpioled.lock, flags); /*解锁*/
    return 0;
}
/*
 * @description : 从设备读取数据
 * @param – filp : 要打开的设备文件(文件描述符)
 * @param - buf : 返回给用户空间的数据缓冲区
 * @param - cnt : 要读取的数据长度
 * @param – offt : 相对于文件首地址的偏移
 * @return : 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
    return 0;
}
/*
73 * @description : 向设备写数据
74 * @param - filp : 设备文件,表示打开的文件描述符
75 * @param - buf : 要写给设备写入的数据
76 * @param - cnt : 要写入的数据长度
77 * @param – offt : 相对于文件首地址的偏移
78 * @return : 写入的字节数,如果为负值,表示写入失败
79 */
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
    int retvalue;
    unsigned char databuf[1];
    unsigned char ledstat;
    struct gpioled_dev *dev = filp->private_data;
    retvalue = copy_from_user(databuf, buf, cnt);
    if (retvalue < 0)
    {
        printk("kernel write failed!\r\n");
        return -EFAULT;
    }
    ledstat = databuf[0]; /* 获取状态值 */

    if (ledstat == LEDON)
    {
        gpio_set_value(dev->led_gpio, 0); /* 打开 LED 灯 */
    }
    else if (ledstat == LEDOFF)
    {
        gpio_set_value(dev->led_gpio, 1); /* 关闭 LED 灯 */
    }
    return 0;
}
/*
104 * @description : 关闭/释放设备
105 * @param – filp : 要关闭的设备文件(文件描述符)
106 * @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
    unsigned long flags;
    struct gpioled_dev *dev = filp->private_data;
    /* 关闭驱动文件的时候将 dev_stats 减 1 */
    spin_lock_irqsave(&dev->lock, flags); /* 上锁 */
    if (dev->dev_stats)
    {
        dev->dev_stats--;
    }
    spin_unlock_irqrestore(&dev->lock, flags); /* 解锁 */
    return 0;
}
/* 设备操作函数 */
static struct file_operations gpioled_fops = {
    .owner = THIS_MODULE,
    .open = led_open,
    .read = led_read,
    .write = led_write,
    .release = led_release,
};
static int __init led_init(void)
{
    int ret = 0;
    spin_lock_init(&gpioled.lock);
    /* 设置 LED 所使用的 GPIO */
    /* 1、获取设备节点: gpioled */
    gpioled.nd = of_find_node_by_path("/gpioled");
    if (gpioled.nd == NULL)
    {
        printk("gpioled node cant not found!\r\n");
        return -EINVAL;
    }
    else
    {
        printk("gpioled node has been found!\r\n");
    }

    /* 2、 获取设备树中的 gpio 属性,得到 LED 所使用的 LED 编号 */
    gpioled.led_gpio = of_get_named_gpio(gpioled.nd, "led-gpio", 0);
    if (gpioled.led_gpio < 0)
    {
        printk("can't get led-gpio");
        return -EINVAL;
    }
    printk("led-gpio num = %d\r\n", gpioled.led_gpio);
    ret = gpio_direction_output(gpioled.led_gpio, 1);
    if (ret < 0)
    {
        printk("can't set gpio!\r\n");
    }
    /*1、创建设备号*/
    if (gpioled.major)
    {
        gpioled.devid = MKDEV(gpioled.major, 0);
        register_chrdev_region(gpioled.devid, GPIOLED_CNT, GPIOLED_NAME);
    }
    else
    {
        alloc_chrdev_region(&gpioled.devid, 0, GPIOLED_CNT, GPIOLED_NAME);
        gpioled.major = MAJOR(gpioled.devid);
        gpioled.minor = MINOR(gpioled.devid);
    }
    printk("newcheled major: %d minor: %d", gpioled.major, gpioled.minor);
    gpioled.cdev.owner = THIS_MODULE;
    cdev_init(&gpioled.cdev, &gpioled_fops);
    cdev_add(&gpioled.cdev, gpioled.devid, GPIOLED_CNT);
    gpioled.class = class_create(THIS_MODULE, GPIOLED_NAME);
    if (IS_ERR(gpioled.class))
    {
        return PTR_ERR(gpioled.class);
    }
    gpioled.device = device_create(gpioled.class, NULL, gpioled.devid, NULL, GPIOLED_NAME);
    if (IS_ERR(gpioled.device))
    {
        return PTR_ERR(gpioled.device);
    }
    return 0;
}
static void __exit led_exit(void)
{

    /* 注销字符设备驱动 */

    cdev_del(&gpioled.cdev); /* 删除 cdev */
    unregister_chrdev_region(gpioled.devid, GPIOLED_CNT);

    device_destroy(gpioled.class, gpioled.devid);
    class_destroy(gpioled.class);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("wyw");

测试App和上面的保持一致即可。

信号量实验:

#include <linux/semaphore.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_gpio.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#define GPIOLED_CNT 1          /* 设备号个数 */
#define GPIOLED_NAME "gpioled" /* 名字 */
#define LEDOFF 0               /* 关灯 */
#define LEDON 1                /* 开灯 */
                               /* gpioled 设备结构体 */
struct gpioled_dev
{
    dev_t devid;            /* 设备号 */
    struct cdev cdev;       /* cdev */
    struct class *class;    /* 类 */
    struct device *device;  /* 设备 */
    int major;              /* 主设备号 */
    int minor;              /* 次设备号 */
    struct device_node *nd; /* 设备节点 */
    int led_gpio;           /* led 所使用的 GPIO 编号 */
    struct semaphore sem;   /* 信号量 */
};
struct gpioled_dev gpioled; /* led 设备 */
static int led_open(struct inode *inode, struct file *filp)
{
    filp->private_data = &gpioled; /* 设置私有数据 */
                                   /* 获取信号量,进入休眠状态的进程可以被信号打断 */
    if (down_interruptible(&gpioled.sem))
    {
        return -ERESTARTSYS;
    }
#if 0
 down(&gpioled.sem); /* 不能被信号打断 */
#endif
    return 0;
}
/*
 * @description : 从设备读取数据
 * @param – filp : 要打开的设备文件(文件描述符)
 * @param - buf : 返回给用户空间的数据缓冲区
 * @param - cnt : 要读取的数据长度
 * @param – offt : 相对于文件首地址的偏移
 * @return : 读取的字节数,如果为负值,表示读取失败
 */
static ssize_t led_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)
{
    return 0;
}
/*
73 * @description : 向设备写数据
74 * @param - filp : 设备文件,表示打开的文件描述符
75 * @param - buf : 要写给设备写入的数据
76 * @param - cnt : 要写入的数据长度
77 * @param – offt : 相对于文件首地址的偏移
78 * @return : 写入的字节数,如果为负值,表示写入失败
79 */
static ssize_t led_write(struct file *filp, const char __user *buf, size_t cnt, loff_t *offt)
{
    int retvalue;
    unsigned char databuf[1];
    unsigned char ledstat;
    struct gpioled_dev *dev = filp->private_data;
    retvalue = copy_from_user(databuf, buf, cnt);
    if (retvalue < 0)
    {
        printk("kernel write failed!\r\n");
        return -EFAULT;
    }
    ledstat = databuf[0]; /* 获取状态值 */

    if (ledstat == LEDON)
    {
        gpio_set_value(dev->led_gpio, 0); /* 打开 LED 灯 */
    }
    else if (ledstat == LEDOFF)
    {
        gpio_set_value(dev->led_gpio, 1); /* 关闭 LED 灯 */
    }
    return 0;
}
/*
104 * @description : 关闭/释放设备
105 * @param – filp : 要关闭的设备文件(文件描述符)
106 * @return : 0 成功;其他 失败
*/
static int led_release(struct inode *inode, struct file *filp)
{
    struct gpioled_dev *dev = filp->private_data;
    /* 关闭驱动文件的时候释放原子变量 */
    up(&dev->sem); /* 释放信号量,信号量值加 1 */
    return 0;
}
/* 设备操作函数 */
static struct file_operations gpioled_fops = {
    .owner = THIS_MODULE,
    .open = led_open,
    .read = led_read,
    .write = led_write,
    .release = led_release,
};
static int __init led_init(void)
{
    int ret = 0;
    sema_init(&gpioled.sem, 1);
    /* 设置 LED 所使用的 GPIO */
    /* 1、获取设备节点: gpioled */
    gpioled.nd = of_find_node_by_path("/gpioled");
    if (gpioled.nd == NULL)
    {
        printk("gpioled node cant not found!\r\n");
        return -EINVAL;
    }
    else
    {
        printk("gpioled node has been found!\r\n");
    }

    /* 2、 获取设备树中的 gpio 属性,得到 LED 所使用的 LED 编号 */
    gpioled.led_gpio = of_get_named_gpio(gpioled.nd, "led-gpio", 0);
    if (gpioled.led_gpio < 0)
    {
        printk("can't get led-gpio");
        return -EINVAL;
    }
    printk("led-gpio num = %d\r\n", gpioled.led_gpio);
    ret = gpio_direction_output(gpioled.led_gpio, 1);
    if (ret < 0)
    {
        printk("can't set gpio!\r\n");
    }
    /*1、创建设备号*/
    if (gpioled.major)
    {
        gpioled.devid = MKDEV(gpioled.major, 0);
        register_chrdev_region(gpioled.devid, GPIOLED_CNT, GPIOLED_NAME);
    }
    else
    {
        alloc_chrdev_region(&gpioled.devid, 0, GPIOLED_CNT, GPIOLED_NAME);
        gpioled.major = MAJOR(gpioled.devid);
        gpioled.minor = MINOR(gpioled.devid);
    }
    printk("newcheled major: %d minor: %d", gpioled.major, gpioled.minor);
    gpioled.cdev.owner = THIS_MODULE;
    cdev_init(&gpioled.cdev, &gpioled_fops);
    cdev_add(&gpioled.cdev, gpioled.devid, GPIOLED_CNT);
    gpioled.class = class_create(THIS_MODULE, GPIOLED_NAME);
    if (IS_ERR(gpioled.class))
    {
        return PTR_ERR(gpioled.class);
    }
    gpioled.device = device_create(gpioled.class, NULL, gpioled.devid, NULL, GPIOLED_NAME);
    if (IS_ERR(gpioled.device))
    {
        return PTR_ERR(gpioled.device);
    }
    return 0;
}
static void __exit led_exit(void)
{

    /* 注销字符设备驱动 */

    cdev_del(&gpioled.cdev); /* 删除 cdev */
    unregister_chrdev_region(gpioled.devid, GPIOLED_CNT);

    device_destroy(gpioled.class, gpioled.devid);
    class_destroy(gpioled.class);
}
module_init(led_init);
module_exit(led_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("wyw");

具体代码如上所示。open函数中申请信号量,可以使用down函数,也可以使用down_interruptible函数。如果信号量值大于等于 1 就表示可用,那么应用程序就会开始使用 LED 灯。如果信号量值为 0 就表示应用程序不能使用 LED 灯,此时应用程序就会进入到休眠状态。等到信号量值大于 1 的时候应用程序就会唤醒,申请信号量,获取 LED 灯使用权实验现象如下:
在这里插入图片描述

互斥体实验

互斥实验类似,将信号量对应的部分换为互斥体的部分即可,具体代码如下:

55 static int led_open(struct inode *inode, struct file *filp)
56 {
57 filp->private_data = &gpioled; /* 设置私有数据 */
58
59 /* 获取互斥体,可以被信号打断 */
60 if (mutex_lock_interruptible(&gpioled.lock)) {
61 return -ERESTARTSYS;
62 }
63 #if 0
64 mutex_lock(&gpioled.lock); /* 不能被信号打断 */
65 #endif
66	return 0;
67	}

119 static int led_release(struct inode *inode, struct file *filp)
120 {
121 struct gpioled_dev *dev = filp->private_data;
122
123 /* 释放互斥锁 */
124 mutex_unlock(&dev->lock);
125
126 return 0;
127 }
143 static int __init led_init(void)
144 {
145 int ret = 0;
146
147 /* 初始化互斥体 */
148 mutex_init(&gpioled.lock);
......
205 return 0;
206 }

标签:led,struct,dev,并发,实验,Linux,return,include,gpioled
From: https://www.cnblogs.com/bathwind/p/18249666

相关文章

  • Linux vim 文本编辑 操作文本 三种模式
    介绍vi是一个经典的行编辑器,支持模式编辑(包括普通模式、插入模式和命令模式)。vim保留vi核心功能的基础上,增加了多级撤销、语法高亮、插件支持等高级功能。两者的最大区别,简单的来说vim就是vi的增强版三种模式命令模式(CommandMode)默认进入的是命令模式。在这个模式......
  • Linux PM:wakeup count、wakelock、autosleep
     在进行wakeupcount、wakelock、autosleep之前,先参考《Linux电源管理(7)_Wakeupeventsframework(wowotech.net)》。下面简单跟一下,wakeupcount、wakelock、autosleep,及其使用方法。1PM初始化PM子系统初始化:pm_initpm_start_workqueuehibernate_image_size_ini......
  • Linux:vim
    目录1、vim简单介绍2、vim使用2.1、进入vim2.2、模式切换2.3、常用命令2.3.1、进出vim2.3.2、定位2.3.3、查找字符串:2.3.4、替换字符串2.3.5、复制粘贴2.3.6、撤销1、vim简单介绍超强的文本编辑器,在Linux中编写代码比较常用,可以根据不同的语言提供高亮,类似notepad+......
  • 持续总结中!2024年面试必问 20 道并发编程面试题(七)
    上一篇地址:持续总结中!2024年面试必问20道并发编程面试题(六)-CSDN博客十三、请解释什么是生产者-消费者问题。生产者-消费者问题(Producer-ConsumerProblem)是计算机科学和操作系统中的一个经典同步问题。这个问题描述了两种不同的进程或线程:生产者(Producer)和消费者(Consumer),它......
  • 持续总结中!2024年面试必问 20 道并发编程面试题(八)
    上一篇地址:持续总结中!2024年面试必问20道并发编程面试题(七)-CSDN博客十五、请解释什么是阻塞队列(BlockingQueue)。阻塞队列(BlockingQueue)是一种特殊的队列,它是Java并发集合的一部分,用于在多线程环境中进行线程间通信。当生产者线程(Producer)尝试将元素放入队列时,如果队列已......
  • Linux 虚拟网络 host gw
    hostgw把host作为网关,通过网关进行数据包传输。使用Containerlab模拟网络a|拓扑b|网络拓扑文件#host-gw.clab.ymlname:host-gwtopology:nodes:gw1:kind:linuximage:vyos/vyos:1.2.8cmd:/sbin/initbinds:-/......
  • Linux下Nginx安装并开启SSL
    Linux下Nginx安装并开启SSL一.下载nginxNginxdownload下载后上传至服务器。PS:博主使用的Nginx版本为:nginx-1.23.4.tar.gz二.安装Nginx所需要的环境1.安装gcc-c++yuminstallgcc-c++yuminstall-yopensslopenssl-devel2.安装pcre包yuminstall-ypcrepcre......
  • Linux文件系统【真的很详细】
    目录 一.认识磁盘1.1磁盘的物理结构1.2磁盘的存储结构1.3磁盘的逻辑存储结构二.理解文件系统 2.1如何管理磁盘2.2如何在磁盘中找到文件 2.3关于文件名哈喽,大家好。今天我们学习文件系统,我们之前在Linux基础IO中研究的是进程和被打开文件之间的关系,以及如何管理被......
  • 《并发编程系列01》从底层源码剖析AQS的来龙去脉!(通俗易懂)
    前言本文是作者的第一篇文章,目的就是可以分享自己个人的一些技术上的心得体会以及找寻志同道合的人来共同讨论技术。个人学习难免会有一些理解上的错误,所以写博客也是为了记录和反思自己的学习过程,进一步加深对技术的理解和掌握。希望通过这篇博客,能够帮助到一些和我一样......
  • Linux项目部署套餐
    第一步准备工作创建一个目录用于存放要用到的工具并上传所需要用到的文件#下载上传需要用到的工具yuminstalllrzsz#创建目录mkdir-p/usr/local/mytools#进入mytools目录下cd/usr/local/mytools#上传可一次性上传jdk,mysql,tomcat,redis压缩包rz第二步安装jd......