内存泄漏的理解和分类
- 可达性分析算法来判断对象是否是不再使用的对象,本质都是判断一上对象是否还被引用,对于这种情况下,由于代码的实现不同就会出现很多内存泄漏问题(让JVM误以为此对象还在引用,无法回收,造成内存泄漏)
内存泄漏(memory leak)
- 严格来说,只有对象不会再被程序用到了,但是GC又不能回收他们的情况,叫内存泄漏
- 对象X引用对象Y,X的生命周期比Y的生命周期长
- 那么当Y生命周期结束的时候,X依然引用着Y,这时候,垃圾回收期是不会回收对象Y的
- 如果对象X还引用着生命周期比较短的A,B,C,对象A对引用着对象a,b,c,这样可能造成大量无用的对象不能被回收,进而占据了内存资源,造成内存泄漏,直到内存溢出
- 申请了内存用完了不释放,如一共有1024M内存,分配了512M的内存一直不回收,那么可用内存只有512M,仿佛泄露了一部分,通俗讲内存泄漏就是【占着茅坑不拉shi】
内存溢出(out of memory)
- 申请内存时,没有足够的内存可以使用
- 通俗一点讲,一个厕所三个坑,有两个站着茅坑不走(内存泄漏),剩下一个坑,厕所一示接待压力大,这时一下来了两个人,坑位(内存)不够了,内存泄漏变成内存溢出了
- 内存泄漏和内存溢出的关系,内存泄漏增多,最终导致内存溢出
泄漏分类
- 经常发生:发生内存泄露的代码会被多次执行,每次执行,泄露一块内存
- 偶然发生:在某些特定情况下才会发生
- 一次性:发生内存泄漏的方法只会执行一次
- 隐式泄漏:一直占着内存不释放,直到执行结束,严格的说这个不算内存泄漏,因为最终释放掉了,但如果执行时间特别长,会导致内存耗尽
Java内存泄漏的8种情况
静态集合类
- 静态集合类,如HashMap、LinkedList等,如果这些容器为静态的,那么它们的生命周期与JVM程序一致,则容器中对象在程序结束这前将不能被释放,从而造成内存泄漏,简单而言,长生命周期的对象持有短生命周期对象的引用,尽管生命周期的对象不再使用,但是因为长生命周期对象持有它的引用而导致不能被回收。
public class MemoryLeak {
static List list = new ArrayList();
public void oomTests() {
Object obj = new Object(); //局部变量,方法执行完成后不能被回收,因为被list所持有(list是静态变量,生命周期同类)
list.add(obj);
}
}
单例模式
- 单例模式和静态集合导致内存泄漏的原因类似,因为单例的静态特性,它的生命周期和JVM的生命周期一样长,所以如果单例对象如果持有外部对象的引用,那么这个外部对象也不会被回收,那么就会造成内存泄漏。
内部类持有外部类
- 内部类持有外部类,如果一个外部类的实例对象的方法返回一个内部类的实例对象
- 这个内部类对象被长期引用了,即使那个外部类实例对象不再被使用,但由于内部类持有外部类的实例对象,这个外部类对象将不会被垃圾回收,这也会造成内存泄漏
各种连接,如数据库连接,网络连接和IO连接等
- 各种连接,如数据库连接,网络连接和IO连接等
- 在对数据库进行操作的过程中,首先要建立与数据库连接,当不再使用时,需要调用close方法来释放与数据库连接,只有连接被关闭后,垃圾回收器才会回收对应的对象
- 否则,在访问数据库的过程中,对Connection,Statement或ResultSet不显性地关闭,将会造成大量的对象无法被回收,从而引起内存泄漏
public static void main(String[] args) {
try {
Connection conn = null;
Class.forName("com.mysql.jdbc.Driver");
conn = DriverManager.getConnection("url","username","password");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("....")
} catch(Exception e) { //异常日志
} finally {
//①关闭结果集 Statement
//②关闭声明的对象 ResultSet
//③关闭连接 Connection
}
}
变量不合适作用域
- 变量不合理的作用域,一般而言,一个变量的定义的作用范围大于其使用范围,很有可能会造成内存泄漏,另一方面,如果没有及时地把对象设置为null,很有可能导致内存泄漏的定义
public class UsingRandom {
private String msg;
public void receiveMsg() {
msg = readFromNet(); //从网络中接收数据保存到msg中
saveDB(); //将msg保存到数据库中
}
}
- 上面伪代码,通过readFromNet方法把接收到的消息保存到变量msg中,然后调用saveDB方法把msg内存保存到数据库,此时msg已经没用了,由于msg的生命周期与对象的生命周期相同,此时msg不能回收,因此造成内存泄漏
- 实际msg变量可以放在receiveMsg方法内部 ,当方法用完,那么msg的生命周期就结束了,此时就可以回收了,另一种方法,使用完msg后,将msg=null,此时垃圾回收器也会回收msg内存空间
改变哈希值
- 当一个对象被存储进HashSet集合中后,就不能修改这个对象中的那些参与计算哈希值的字段了,否则,对象修改后的哈希值与最初存储进HashSet集合中的哈希值就不同了,在这种情况下,即使用在contains方法使用该对象的当前引用作为的参数去HashSet集合中检索对象,也将返回找不到对象的结果,这也会导致无法从HashSet集合中单独删除当前对象,造成内存泄漏
- 这也是String设置成不可变类型的原因,可以放心把String存入HashSet,或把String当成HashMap的key值
- 当我们需要把自定义的类保存到散列表时,需要保证对象的hashCode不可变
public class ChangeHashCode1 {
public static void main(String[] args) {
HashSet<Point> hs = new HashSet<>();
Point cc = new Point();
cc.setX(10); //hashCode = 41
hs.add(cc);
cc.setX(20); //hashCode = 51
System.out.println("hs.remove = " + hs.remove(cc)); // false
hs.add(cc);
System.out.println("hs.size = " + hs.size()); //2
}
}
class Point {
int x;
public int getX() {
return x;
}
public void setX(int x) {
this.x = x;
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + x;
return result;
}
@Override
public boolean equals(Object obj) {
if (this == obj) {
return true;
}
if (obj == null) return false;
if (getClass() != obj.getClass()) return false;
Point other = (Point) obj;
if (x != other.x) return false;
return true;
}
}
//执行结果
hs.remove = false
hs.size = 2
缓存泄漏
- 一旦对象引用放入缓存中,很容易遗忘,比如,之前项目在一次上线的时候,应用启动奇慢直至夯死,因为代码中会加载一个表中的数据到缓存(内存)中,测试环境只有几百条数据,但是生产环境有几百万的数据。
- 对于这个问题,可以使用WeakHashMap代表缓存,此种Map的特点是,当除了自身有对key的引用外,此key没有其他引用那么此map会自动丢弃此值。
public class MapTest {
static Map wMap = new WeakHashMap();
static Map map = new HashMap();
public static void main(String[] args) {
init();
testWeakHashMap();
testHashMap();
}
public static void init() {
String ref1 = new String("object1");
String ref2 = new String("object2");
String ref3 = new String("object3");
String ref4 = new String("object4");
wMap.put(ref1,"cacheObject1");
wMap.put(ref2,"cacheObject2");
map.put(ref3,"cacheObject3");
map.put(ref4,"cacheObject4");
System.out.println("String引用ref1,ref2,ref3,ref4消失");
}
public static void testWeakHashMap(){
System.out.println("WeakHashMap GC前");
for (Object o : wMap.entrySet()) {
System.out.println(o);
}
try {
System.gc();
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("WeakHashMap GC后");
for (Object o : wMap.entrySet()) {
System.out.println(o);
}
}
public static void testHashMap() {
System.out.println("HashMap GC前");
for (Object o : map.entrySet()) {
System.out.println(o);
}
try {
System.gc();
TimeUnit.SECONDS.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("HashMap GC后");
for (Object o : map.entrySet()) {
System.out.println(o);
}
}
}
//执行结果
String引用ref1,ref2,ref3,ref4消失
WeakHashMap GC前
object2=cacheObject2
object1=cacheObject1
WeakHashMap GC后
HashMap GC前
object4=cacheObject4
object3=cacheObject3
HashMap GC后
object4=cacheObject4
object3=cacheObject3
监听器和回调
- 如果客户端在你实现API注册回调,却没有显示的取消,就会产生积聚,需要确保回调被当作垃圾回收的最佳方法是只保存它的弱引用,保存成WeakHashMap的键