目录
1.整数在内存中的存储
在讲解操作符的时候,我们就讲过了下⾯的内容:
整数的2进制表⽰⽅法有三种,即 原码、反码和补码;三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,⽽数值位最⾼位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
负整数的三种表⽰⽅法各不相同。
原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值⼀律⽤补码来表⽰和存储。
原因在于,使⽤补码,可以将符号位和数值域统⼀处理;
同时,加法和减法也可以统⼀处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是
相同的,不需要额外的硬件电路。
2.大小端字节序和字节序判断
当我们了解了整数在内存中存储后,我们调试看一个细节:
#include <stdio.h>
int main()
{
int a = 0x00000101;
return 0;
}
调试的时候,我们可以看到在a中的 0x11223344 这个数字是按照字节为单位,倒着存储的。这是为
什么呢?
2.1 什么是大小端?
其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分
为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存
在内存的低地址处。
⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存
在内存的⾼地址处。
上述概念需要记住,⽅便分辨⼤⼩端。
2.2 为什么会有大小端?
这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着⼀个字节,⼀个字节为8
bit 位,但是在C语⾔中除了8 bit 的 char 之外,还有16 bit 的 short 型,32 bit 的 long 型(要看
具体的编译器),另外,对于位数⼤于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度⼤
于⼀个字节,那么必然存在着⼀个如何将多个字节安排的问题。因此就导致了⼤端存储模式和⼩端存
储模式。
例如:⼀个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么
0x11 为⾼字节, 0x22 为低字节。对于⼤端模式,就将 0x11 放在低地址中,即 0x0010 中,
0x22 放在⾼地址中,即 0x0011 中。⼩端模式,刚好相反。我们常⽤的 X86 结构是⼩端模式,⽽
KEIL C51 则为⼤端模式。很多的ARM,DSP都为⼩端模式。有些ARM处理器还可以由硬件来选择是
⼤端模式还是⼩端模式。
2.3 练习
2.3.1 练习1
请简述⼤端字节序和⼩端字节序的概念,设计⼀个⼩程序来判断当前机器的字节序。(10分)-百度笔试题
#include <stdio.h>
//代码1
int check_sys()
{
int i = 1;
return(*(char*)&i);
}
int main()
{
int ret = check_sys();
if (ret == 1)
{
printf("小端存储\n");
}
else
{
printf("大端存储\n");
}
return 0;
}
//代码2
//int check_sys()
//{
// union
// {
// int i;
// char c;
// }un;
// un.i = 1;
// return un.c;
//}
2.3.2 练习2
//下面给出字符a,有符号字符b,无符号字符c的值都为-1
// 观察下面代码的运行结果,为啥运行结果不一样呢?
#include <stdio.h>
int main()
{
char a = -1;
//原码:10000000 00000000 00000000 00000001
//反码:11111111 11111111 11111111 11111110
//补码:11111111 11111111 11111111 11111111
//因为a是整型,所以char放在a前面,这里相当于强制类型转换
//补码:11111111 反码:11111110 原码:10000001 所以结果是-1
signed char b = -1;
//有符号字符计算结果同上
unsigned char c = -1;
//原码:10000000 00000000 00000000 00000001
//反码:01111111 11111111 11111111 11111110
//补码:01111111 11111111 11111111 11111111
//因为a是整型,所以unsigned char放在a前面,这里相当于强制类型转换
//补码、反码、原码:11111111 所以结果是255
printf("a = %d, b = %d, c = %d", a, b, c);
return 0;
}
2.3.3 练习3
//判断下面的计算结果
#include <stdio.h>
int main()
{
char a = -128;
//原码:10000000 00000000 00000000 10000000
//反码:11111111 11111111 11111111 01111111
//补码:11111111 11111111 11111111 10000000
//字符a:10000000
//因为%u表示无符号整数,而a的数据类型是字符,所以需要整型提升,这里a是有符号字符
//所以整型提升时,要补符号位
//补完之后:11111111 11111111 11111111 10000000 二进制转为十进制后,大小是4294 967 168
//所以运行完之后,结果是这个数的十进制结果
printf("%u", a);
return 0;
}
//判断下面的计算结果
#include <stdio.h>
int main()
{
char a = 128;
//原码:00000000 00000000 00000000 10000000
//字符a:10000000
//因为%u表示无符号整数,而a的数据类型是字符,所以需要整型提升,这里a是有符号字符
//所以整型提升时,要补符号位
//补完之后:11111111 11111111 11111111 10000000 二进制转为十进制后,大小是4294 967 168
//所以运行完之后,跟上面的代码结果相同
printf("%u", a);
return 0;
}
2.3.4 练习4
#include <stdio.h>
int main()
{
char a[1000]
int i;
for (i = 0; i < 1000; i++)
{
a[i] = -1 - i;
}
printf("%d", strlen(a));
return 0;
2.3.5 练习5
#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0; i <= 255; i++)
{
printf("hello world");
}
return 0;
}
//运行结果是死循环,因为无符号字符的取值范围为0-255,最大值为255
#include <stdio.h>
int main()
{
unsigned int i;
for (i = 0; i <= 255; i++)
{
printf("hello world");
}
return 0;
}
//运行结果为打印256个hello world
#include <stdio.h>
int main()
{
unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}
return 0;
}//无符号整型恒大于0,所以死循环
2.3.6 练习6
#include <stdio.h>
int main()
{
//X86环境,小端字节序
int a[4] = { 1, 2, 3, 4 };
int *ptr1 = (int *)(&a + 1);
int *ptr2 = (int *)((int)a + 1);
printf("%x,%x", ptr1[-1], *ptr2);
return 0;
}//ptr1[-1]结果是4;*ptr2的结果是0x02 00 00 00
//a[0] 1 四个字节 01 00 00 00
//(int)a+1 跳过01 01 00 00 00 02 00 00 00 03 00 00 00 04 00 00 00
//所以输出的四个字节为 00 00 00 02(从左到右依次为低字节 → 高字节)
//0x02 00 00 00 所以输出结果为 20000 00
3. 浮点数在内存中的存储
常⻅的浮点数:3.14159、1E10等,浮点数家族包括: float、double、long double 类型。
浮点数表⽰的范围: float.h 中定义
3.1 练习
#include <stdio.h>
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
3.2 浮点数的存储
上⾯的代码中, num 和 *pFloat 在内存中明明是同⼀个数,为什么浮点数和整数的解读结果会差别这么⼤?
要理解这个结果,⼀定要搞懂浮点数在计算机内部的表⽰⽅法。
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
举例来说:
⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。
3.2.1 浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
⾄于指数E,情况就⽐较复杂
⾸先,E为⼀个⽆符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
3.2.2 浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
0 00000000 00100000000000000000000
E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);
0 11111111 00010000000000000000000
好了,关于浮点数的表⽰规则,就说到这⾥。
3.3 题⽬解析
下⾯,让我们回到⼀开始的练习
先看第1环节,为什么 9 还原成浮点数,就成了 0.000000 ?
9以整型的形式存储在内存中,得到如下⼆进制序列:
0000 0000 0000 0000 0000 0000 0000 1001
⾸先,将 9 的⼆进制序列按照浮点数的形式拆分,得到第⼀位符号位s=0,后⾯8位的指数
E=00000000 ,
最后23位的有效数字M=000 0000 0000 0000 0000 1001。
由于指数E全为0,所以符合E为全0的情况。因此,浮点数V就写成:
V=(-1)^ 0 × 0.00000000000000000001001×2^ (-126)=1.001×2^(-146)
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
显然,V是⼀个很⼩的接近于0的正数,所以⽤⼗进制⼩数表⽰就是0.000000。
再看第2环节,浮点数9.0,为什么整数打印是 1091567616?
⾸先,浮点数9.0 等于⼆进制的1001.0,即换算成科学计数法是:1.001×2^3
所以: 9.0 = (−1)0 ∗ (1.001) ∗ 23 ,
那么,第⼀位的符号位S=0,有效数字M等于001后⾯再加20个0,凑满23位,指数E等于3+127=130,即10000010 。所以,写成⼆进制形式,应该是S+E+M,即:
0 10000010 001 0000 0000 0000 0000 0000
这个32位的⼆进制数,被当做整数来解析的时候,就是整数在内存中的补码,原码正是1091567616 。
完。
标签:11111111,存储,字节,int,18,浮点数,00,内存 From: https://blog.csdn.net/m0_46676283/article/details/139077184