首页 > 系统相关 >Linux--Flappy_bird实现

Linux--Flappy_bird实现

时间:2024-03-23 16:30:06浏览次数:32  
标签:cur Flappy -- void next pipe 管道 bird

目录

void handler(int sig): 

mian:

void init_curses()

int set_timer(int ms_t); 

小鸟的操作: 

void show_pipe():

 void create_list()

void clear_pipe()

void move_pipe();

 test_bird.c完整代码:


代码实现:

#include<stdio.h>
#include<curses.h>
#include<signal.h>
#include<sys/time.h>
#include<stdlib.h>

#define BIRD '@'
#define BLANK ' '
#define PIPE '+'

/**定义管道结构体**/
typedef struct Pipe
{
	int x;//列
	int y;//横
	struct Pipe* next;
}Pipe_node;//管道节点

Pipe_node* head,*tail;

void create_list();
void show_pipe();//显示管道
void clear_pipe();
void move_pipe();

int bird_y,bird_x;//代表小鸟坐标

void show_bird();//显示小鸟
void clear_bird();//清除小鸟
void move_bird();//移动小鸟

void init_curses();//curses库初始化
int set_timer(int ms_t);//设置定时器--ms


void handler(int sig)
{
	Pipe_node* cur;
	Pipe_node* new;
	/**小鸟下落**/
	clear_bird();
	bird_y++;
	show_bird();

	/**游戏结束判断**/
	if((char)inch() == PIPE)
	{
		set_timer(0);
		endwin();
		exit(1);
	}

	cur = head->next;
	if(cur->x == 0)
	{
		int i,j = 0;
		for(i = cur->x;i < cur->x + 10;i++)
		{
			for(j = 0;j<cur->y;j++)
			{
				move(j,i);
				addch(BLANK);
			}
		

			for(j = cur->y+5;j<25;j++)
			{
				move(j,i);
				addch(BLANK);
			}
			refresh();
		}
		head->next = cur->next;
		free(cur);
		
		new = (Pipe_node*)malloc(sizeof(Pipe_node));
		new->x = tail->x + 20;
		new->y = rand() % 11 +5;
		new->next = NULL;

		tail->next = new;
		tail = new;
	}

	/**管道移动**/
	clear_pipe();
	move_pipe();
	show_pipe();
}

int main()
{
	bird_y = 15;//行
	bird_x = 10;//列
	
	init_curses();
	signal(SIGALRM,handler);
	set_timer(500);//500ms
	
	srand(time(0));
	create_list();
	show_pipe();


	show_bird();
	move_bird();

	return 0;
}

void init_curses()
{
	initscr();//进入curses模式
	curs_set(0);//禁止光标显示
	noecho();//禁止输入字符显示
	keypad(stdscr,1);//启动功能键
	start_color();//启动颜色机制
	init_pair(1,COLOR_WHITE,COLOR_RED);
	init_pair(2,COLOR_WHITE,COLOR_GREEN);
}

int set_timer(int ms_t)
{
	struct itimerval timer;
	long t_sec,t_usec;
	int ret;

	t_sec = ms_t / 1000;//s
	t_usec = (ms_t % 1000) * 1000; //us

	timer.it_value.tv_sec = t_sec;
	timer.it_value.tv_usec = t_usec;//首次启动定时值

	timer.it_interval.tv_sec = t_sec;
	timer.it_interval.tv_usec = t_usec;//定时时间间隔

	ret = setitimer(ITIMER_REAL,&timer,NULL);
	return ret;
}


void show_bird()
{
	attron(COLOR_PAIR(1));
	move(bird_y,bird_x);
	addch(BIRD);
	refresh();
	attroff(COLOR_PAIR(1));
}

void clear_bird()
{
	move(bird_y,bird_x);
	addch(BLANK);
	refresh();
}

void move_bird()
{
	char key;
	while(1)
	{
		key = getch();
		if(key == ' ')
		{
			clear_bird();
			bird_y--;
			show_bird();

			/**游戏结束判断**/
			if((char)inch() == PIPE)
			{
				set_timer(0);
				endwin();
				exit(1);
			}
		}
	}
}



void show_pipe()
{
	Pipe_node* cur = head->next;
	int i;
	int j;
	attron(COLOR_PAIR(2));
	while(cur)
	{
		for(i = cur->x;i < (cur->x) + 10;i++)
		{
			for(j = 0;j<cur->y;j++)
			{
				move(j,i);
				addch(PIPE);
			}
		

			for(j = (cur->y) + 5;j < 25;j++)
			{
				move(j,i);
				addch(PIPE);
			}
		}
		refresh();
		cur = cur->next;
	}
	attroff(COLOR_PAIR(2));
}


void create_list()
{
	Pipe_node* cur;
	Pipe_node* new;
	head = (Pipe_node*)malloc(sizeof(Pipe_node));//头结点
	head->next = NULL;
	cur = head;//指向头结点

	int i = 0;
	for(i = 0;i<5;i++)
	{
		new = (Pipe_node*)malloc(sizeof(Pipe_node));
		new->x = (i+1)*20;
		new->y = rand()%11+5;//管道的长度是5-15行
		new->next = NULL;
		cur->next = new;//链接新节点和头结点
		cur = new;//指向新节点为尾节点
	}
	tail = cur;//更新尾节点
}


void clear_pipe()
{
	
	Pipe_node* next = head->next;
	int i;
	int j;
	while(next)
	{
		for(i = next->x;i < (next->x) + 10;i++)
		{
			for(j = 0;j < (next->y);j++)
			{
				move(j,i);
				addch(BLANK);
			}
		

			for(j = (next->y) + 5;j<25;j++)
			{
				move(j,i);
				addch(BLANK);
			}
		}
		refresh();
		next = next->next;
	}




}

void move_pipe()
{
	Pipe_node* cur;
	cur = head->next;
	while(cur)
	{
		cur->x--;
		cur = cur->next;
	}
	
}

 各模块注释:

函数声明:

void create_list(): 创建管道链表。在游戏开始时调用,生成初始的一些管道。

void show_pipe(): 显示管道。遍历管道链表,将管道在屏幕上显示出来。

void clear_pipe(): 清除管道。清除屏幕上所有的管道。

void move_pipe(): 移动管道。遍历管道链表,将所有的管道向左移动一个单位。

void show_bird(): 显示小鸟。在屏幕上显示小鸟的位置。

void clear_bird(): 清除小鸟。清除屏幕上小鸟的位置。

void move_bird(): 移动小鸟。监听用户输入,当按下空格键时,使小鸟上升一格。

void init_curses(): 初始化 curses 库。在程序开始时调用,进入 curses 模式,设置一些终端属性。

int set_timer(int ms_t): 设置定时器。用于定时触发 SIGALRM 信号,以便实现游戏中小鸟的下落和管道的移动。

void handler(int sig): 


这是一个信号处理函数,用于处理 SIGALRM 信号。具体功能如下:

小鸟下落:首先调用 clear_bird() 清除当前小鸟的位置,然后将小鸟的纵坐标 bird_y 增加 1,表示小鸟向下移动了一格,最后调用 show_bird() 在新位置显示小鸟。

游戏结束判断:通过检查小鸟下一个位置的字符,如果该位置的字符是管道 PIPE,则游戏结束。在 curses 库中,可以使用 inch() 函数获取当前光标位置的字符。如果检测到小鸟碰到管道,就会调用 set_timer(0) 停止定时器,然后调用 endwin() 结束 curses 模式,最后调用 exit(1) 退出程序。

管道移动和生成新管道:如果当前管道已经移动到屏幕左侧边缘(即 cur->x == 0),则表示需要移除该管道,并生成新的管道。首先,清除屏幕上该管道的位置。然后,将当前头指针 head 指向下一个管道节点,同时释放当前节点的内存。接着,生成新的管道节点 new,其横坐标为尾节点的横坐标加上一定的距离(例如,20),纵坐标为随机生成的值。最后,更新尾指针 tail 指向新的尾节点。

管道移动和显示:最后调用 clear_pipe() 清除屏幕上的所有管道,然后调用 move_pipe() 将所有管道向左移动一个单位,最后调用 show_pipe() 显示移动后的管道。

这个处理函数实现了游戏中小鸟的下落、游戏结束判断以及管道的移动和生成

mian:


这是 main() 函数,是程序的入口点。它完成了以下操作:

初始化小鸟的初始位置 bird_y 和 bird_x,分别设置为第 15 行和第 10 列。

调用 init_curses() 函数初始化 curses 库,准备开始游戏。

使用 signal(SIGALRM, handler) 设置了一个定时器信号 SIGALRM 的处理函数为 handler,即当定时器到达指定时间时,会调用 handler 函数处理。

调用 set_timer(500) 设置定时器,以 500 毫秒为间隔触发 SIGALRM 信号,即每 500 毫秒触发一次,用于控制小鸟的下落和管道的移动。

调用 srand(time(0)) 初始化随机数种子,以当前时间为参数,保证每次运行程序时生成的随机数不同。

调用 create_list() 函数创建初始的管道链表。

调用 show_pipe() 函数在屏幕上显示初始的管道。

调用 show_bird() 函数在屏幕上显示初始位置的小鸟。

调用 move_bird() 函数监听用户输入,控制小鸟的移动。

最后返回 0,表示程序正常运行结束。

void init_curses()


这是 init_curses() 函数,用于初始化 curses 库,具体功能如下:

initscr() 函数用于初始化 curses 库,将终端设置为 curses 模式,以便使用 curses 提供的功能。

curs_set(0) 函数禁止光标显示,以免干扰游戏界面的显示。

noecho() 函数禁止输入字符的显示,这样用户输入的字符不会直接显示在终端上,而是被程序接收并处理。

keypad(stdscr, 1) 函数启用功能键,使得 curses 库能够接收并处理终端上的特殊按键(例如方向键、功能键等)。

start_color() 函数用于启动 curses 库的颜色机制,使得程序能够使用彩色显示。

init_pair(1, COLOR_WHITE, COLOR_RED) 和 init_pair(2, COLOR_WHITE, COLOR_GREEN) 函数分别初始化了两个颜色对,用于设置小鸟和管道的颜色。这里使用了颜色对,将白色作为前景色,红色作为背景色,以及将白色作为前景色,绿色作为背景色,来实现不同的显示效果。

这个函数在游戏开始时被调用,对 curses 库进行了必要的初始化,以确保游戏界面的正常显示和用户交互功能的实现。

int set_timer(int ms_t); 

这是 set_timer() 函数,用于设置定时器,具体功能如下:

接收一个参数 ms_t,表示定时器的时间间隔,单位为毫秒。

将毫秒转换为秒和微秒,以适配 struct itimerval 结构体的成员类型。
将毫秒转换为秒,然后将剩余的毫秒转换为微秒。

初始化一个 struct itimerval 类型的变量 timer,用于设置定时器的参数。

将 it_value 成员设置为首次启动定时器的时间,即 tv_sec 设置为转换后的秒数,tv_usec 设置为转换后的微秒数。

将 it_interval 成员设置为定时器的时间间隔,也就是每次定时器触发后再次触发的时间间隔,同样设置为转换后的秒数和微秒数。

使用 setitimer() 函数设置实时定时器 ITIMER_REAL,并将 timer 作为参数传入。
这样设置的定时器将会以实时时间为基准,定时器触发后会产生 SIGALRM 信号。

函数返回一个整数值,表示设置定时器的结果,通常为 0 表示成功,-1 表示失败。

这个函数被用于在游戏中设置一个定时器,以控制小鸟的下落速度和管道的移动速度

小鸟的操作: 

这是一组函数,用于控制小鸟在游戏界面中的显示和移动,以及处理游戏结束的逻辑。

void show_bird(): 这个函数用于显示小鸟在游戏界面中的位置。
首先调用 attron(COLOR_PAIR(1)) 函数,启用颜色对1,以设置小鸟的颜色。
然后调用 move() 函数将光标移动到小鸟的位置(由全局变量 bird_y 和 bird_x 控制),调用 addch() 函数在光标所在位置添加小鸟字符 BIRD,最后调用 refresh() 函数刷新屏幕。
最后调用 attroff(COLOR_PAIR(1)) 函数,关闭颜色对1,恢复原有颜色设置。

void clear_bird(): 这个函数用于清除小鸟在游戏界面中的位置。
首先调用 move() 函数将光标移动到小鸟的位置,然后调用 addch() 函数在光标所在位置添加空白字符 BLANK,最后调用 refresh() 函数刷新屏幕。

void move_bird(): 这个函数用于控制小鸟的移动。
函数使用一个无限循环来等待用户按键输入,只有在用户按下空格键时才执行移动操作。
当用户按下空格键时,首先调用 clear_bird() 函数清除小鸟当前位置的显示,然后将小鸟的行坐标 bird_y 减1,表示小鸟向上移动一个位置,接着调用 show_bird() 函数重新在新位置显示小鸟。

在移动小鸟后,函数会检查小鸟所在位置是否与管道重叠,如果重叠则会调用 set_timer(0) 函数停止定时器,然后调用 endwin() 函数关闭 curses 模式,最后调用 exit(1) 函数退出程序,以表示游戏结束。

这组函数控制了小鸟在游戏中的显示和移动,同时处理了游戏结束的逻辑。

void show_pipe():
 


这个函数用于显示管道在游戏界面中的位置。

Pipe_node* cur = head->next;: 首先,定义一个指针 cur,指向管道链表中的第一个管道节点,跳过头结点。

int i; int j;: 定义循环变量 i 和 j,用于遍历管道的列和行。

attron(COLOR_PAIR(2));: 调用 attron() 函数启用颜色对2,以设置管道的颜色。

while(cur) { ... }: 使用一个循环遍历管道链表中的所有管道节点。

for(i = cur->x; i < (cur->x) + 10; i++) { ... }: 遍历管道所在的列,从管道节点的列坐标开始,到列坐标加上10(管道长度)为止。对于每一列:

for(j = 0; j < cur->y; j++) { ... }: 遍历管道上半部分的行,从第0行到管道节点的横坐标减1行为止。对于每一行,在当前列的位置显示管道字符 PIPE。

for(j = (cur->y) + 5; j < 25; j++) { ... }: 遍历管道下半部分的行,从管道节点的横坐标加上5行开始,直到第25行为止。对于每一行,在当前列的位置显示管道字符 PIPE。

refresh();: 在循环结束后调用 refresh() 函数刷新屏幕,以显示更新后的管道。

cur = cur->next;: 将指针 cur 移动到下一个管道节点,以继续遍历。

attroff(COLOR_PAIR(2));: 调用 attroff() 函数关闭颜色对2,恢复原有颜色设置。

 void create_list()

这个函数用于创建初始的管道链表。

Pipe_node* cur;: 定义指针 cur,用于遍历链表。

Pipe_node* new;: 定义指针 new,用于创建新的管道节点。

head = (Pipe_node*)malloc(sizeof(Pipe_node));: 分配内存给头结点。

head->next = NULL;: 将头结点的指针域指向空,表示链表为空。

cur = head;: 将 cur 指针指向头结点,作为链表的起始点。

for(i = 0; i < 5; i++) { ... }: 使用循环创建5个初始管道节点。

new = (Pipe_node*)malloc(sizeof(Pipe_node));: 分配内存给新的管道节点。

new->x = (i + 1) * 20;: 设置新节点的列坐标为 (i + 1) * 20,确保管道节点之间的水平间距。

new->y = rand() % 11 + 5;: 随机生成管道节点的横坐标,范围在5到15之间,以确保管道长度在5到15行之间。

new->next = NULL;: 将新节点的指针域设为空,因为它是最后一个节点。

cur->next = new;: 将新节点连接到当前节点的后面。

cur = new;: 将 cur 指针移动到新节点,作为链表的尾节点。

tail = cur;: 更新尾节点为链表的最后一个节点。

void clear_pipe()

这个函数用于清除当前屏幕上的所有管道。

Pipe_node* next = head->next;: 定义指针 next 指向头结点的下一个节点,即第一个管道节点。

int i;: 定义整型变量 i 用于循环迭代列坐标。

int j;: 定义整型变量 j 用于循环迭代横坐标。

while(next) { ... }: 当 next 指针不为空时,即还有管道节点未清除时,执行循环。

for(i = next->x; i < (next->x) + 10; i++) { ... }: 遍历当前管道节点的列坐标范围,即管道的横向范围。

for(j = 0; j < (next->y); j++) { ... }: 遍历当前管道节点的上半部分,即管道的上半部分高度范围。

move(j, i);: 将光标移动到指定位置。

addch(BLANK);: 在当前位置添加一个空白字符,以清除该位置上的管道。

for(j = (next->y) + 5; j < 25; j++) { ... }: 遍历当前管道节点的下半部分,即管道的下半部分高度范围。

move(j, i);: 将光标移动到指定位置。

addch(BLANK);: 在当前位置添加一个空白字符,以清除该位置上的管道。

refresh();: 刷新屏幕,使更新生效。

next = next->next;: 将 next 指针指向下一个管道节点,以便继续清除下一个管道节点。

void move_pipe();

这个函数用于移动管道,使其向左移动一个单位。

Pipe_node* cur;: 声明一个指针 cur,用于遍历管道链表。

cur = head->next;: 将 cur 指向管道链表的第一个节点,即头结点的下一个节点,表示从第一个管道开始移动。

while(cur) { ... }: 当 cur 指针不为空时,即还有管道节点需要移动时,执行循环。

cur->x--;: 将当前管道节点的列坐标减1,实现向左移动一个单位。

cur = cur->next;: 将 cur 指针移动到下一个管道节点,以便继续移动下一个管道节点。

 test_bird.c完整代码:

#include<signal.h>
#include<stdio.h>
#include<curses.h>
#include<stdlib.h>
#include<sys/time.h>

#define BIRD '@'
#define BLANK ' '
#define PIPE '+'


/**小鸟**/
void init_curses();
int set_timer(int ms_time);
void show_bird();
void move_bird();
void clear_bird();


/**管道**/
void create_list();
void show_pipe();
void move_pipe();
void clear_pipe();


/**管道结构体**/
typedef struct Pipe
{
	struct Pipe* next;
	int pipe_x;
	int pipe_y;
}PipeNode;
PipeNode* head;//头结点
PipeNode* tail;//尾节点

/**小鸟坐标**/
int bird_x;//列
int bird_y;//行


/**定时回调函数**/
void timer_handler(int sig)
{
	/**小鸟自动向下移动**/
	clear_bird();
	bird_y++;//50ms小鸟自动向下掉
	show_bird();

	/**小鸟碰到管道,游戏结束**/
	if((char)inch() == PIPE)
	{
		set_timer(0);
		endwin();
		exit(1);
	}

	/**管道更新**/
	PipeNode* cur = head->next;
	PipeNode* newPipeNode;
	int i,j;
	if(cur->pipe_x == 0)
	{
	/**清除管道**/
		for(i = cur->pipe_x;i < (cur->pipe_x) + 10;i++)
		{
			/**管道的上半部分**/
			for(j = 0;j < cur->pipe_y;j++)
			{
				move(j,i);
				addch(BLANK);
			}
			/**管道的下半部分**/
			for(j = (cur->pipe_y + 5);j < 25;j++)
			{
				move(j,i);
				addch(BLANK);
			}
			refresh();
		}
		head->next = cur->next;
		free(cur);
	/**开辟新管道**/
		newPipeNode = (PipeNode*)malloc(sizeof(PipeNode));
	    newPipeNode->pipe_x = tail->pipe_x + 20;
		newPipeNode->pipe_y = rand() % 11 + 5;
		newPipeNode->next = NULL;
		tail->next = newPipeNode;//链接新节点
		tail = newPipeNode;//更新尾节点
	}
	



	/**管道自动向左移动**/
	clear_pipe();
	move_pipe();
	show_pipe();
}


int main(int arg,const char* argv[])
{
	init_curses();
	bird_x = 15;//列
	bird_y = 10;//行


	struct sigaction act;
	act.sa_handler = timer_handler;
	act.sa_flags = 0;
	sigemptyset(&act.sa_mask);
	sigaction(SIGALRM,&act,NULL);
	set_timer(500);

	srand(time(0));//管道的长度随机
	create_list();
	show_pipe();//创建管道

	show_bird();
	move_bird();
	return 0;
}

void init_curses()
{
	initscr();
	curs_set(0);
	noecho();
	keypad(stdscr,1);
	start_color();
	init_pair(1,COLOR_WHITE,COLOR_RED);
	init_pair(2,COLOR_WHITE,COLOR_GREEN);
	endwin();
}

int set_timer(int ms_time)
{
	struct itimerval timer;
	int tv_sec = ms_time / 1000;
	int tv_usec = (ms_time % 1000) * 1000;
	timer.it_value.tv_sec = tv_sec;
	timer.it_value.tv_usec = tv_usec;
	timer.it_interval.tv_sec = tv_sec;
	timer.it_interval.tv_usec = tv_usec;
	setitimer(ITIMER_REAL,&timer,NULL);
}
void clear_bird()
{
	move(bird_y,bird_x);
	addch(BLANK);
	refresh();
}


void show_bird()
{
	attron(COLOR_PAIR(1));
	move(bird_y,bird_x);
	addch(BIRD);
	refresh();
	attroff(COLOR_PAIR(1));
}


void move_bird()
{
	char key;
	while(1)
	{
		key = getch();
		if(key == ' ')
		{
			clear_bird();
			bird_y--;
			show_bird();

			if((char)inch() == PIPE)
			{
				set_timer(0);
				endwin();
				exit(1);
			}
		}
	}
	
}



void create_list()
{
	PipeNode* cur;
	PipeNode* newPipeNode;
	head = (PipeNode*)malloc(sizeof(PipeNode));//开辟一个头节点指向链表
	head->next = NULL;
	cur = head;
	int i = 0;
	for(i = 0;i < 5;i++)
	{
		newPipeNode = (PipeNode*)malloc(sizeof(PipeNode));
		newPipeNode->pipe_x = (i+1) * 20;//(20列*(1-5))
		newPipeNode->pipe_y = rand() % 11 + 5;//(5-15行)
		newPipeNode->next = NULL;//开辟五个节点

		cur->next = newPipeNode;//头结点的下一个节点为链表的头结点
		cur = newPipeNode;//指向当前新节点
	}
	tail = cur;//更新尾节点
}


void show_pipe()
{
	PipeNode* cur = head->next;
	int i,j;
	attron(COLOR_PAIR(2));
	while(cur != NULL)
	{
		for(i = cur->pipe_x;i < (cur->pipe_x) + 10;i++)
		{
			/**管道的上半部分**/
			for(j = 0;j < cur->pipe_y;j++)
			{
				move(j,i);
				addch(PIPE);
				refresh();
			}
			/**管道的下半部分**/
			for(j = (cur->pipe_y + 5);j < 25;j++)
			{
				move(j,i);
				addch(PIPE);
				refresh();
			}
		}
		refresh();
		cur = cur->next;
	}
	attroff(COLOR_PAIR(2));
}


void clear_pipe()
{

	PipeNode* cur = head->next;
	int i,j;
	while(cur != NULL)
	{
		for(i = cur->pipe_x;i < (cur->pipe_x) + 10;i++)
		{
			/**管道的上半部分**/
			for(j = 0;j < cur->pipe_y;j++)
			{
				move(j,i);
				addch(BLANK);
				refresh();
			}
			/**管道的下半部分**/
			for(j = (cur->pipe_y + 5);j < 25;j++)
			{
				move(j,i);
				addch(BLANK);
				refresh();
			}
		}
		refresh();
		cur = cur->next;
	}
}



void move_pipe()
{
	PipeNode* cur = head->next;
	while(cur != NULL)
	{
		cur->pipe_x--;
		cur = cur->next;
	}
}

标签:cur,Flappy,--,void,next,pipe,管道,bird
From: https://blog.csdn.net/weixin_57604904/article/details/136902763

相关文章

  • 基于FPGA温度采集的方案
    1.使用温度传感器与FPGA连接:FPGA可以通过接口与外部温度传感器进行通信,实时读取温度数据并进行处理。其中一种常用的温度传感器是LM75系列传感器,如LM75A、LM75B等。这些传感器具有高精度、温度测量范围广、低功耗等特点。                 ......
  • 2099.整除的尾数
    importjava.util.LinkedHashMap;importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannerscanner=newScanner(System.in);while(true){LinkedHashMap<String,Integer>hashMap=newL......
  • 【Godot4自学手册】第二十七节自定义状态机完成看守地宫怪物
    本节,我将使用自定义状态机实现看守地宫怪物,完成了基础类State,状态机类StateMachine的编码,实现了怪物的闲置巡逻类、追踪类和攻击类,以及对应动画等。这节代码有点多,不过还好,代码比较简单。最终效果如下:一、基本概念状态机(StateMachine)是有限状态自动机的简称,是指一个数学......
  • Web漏洞--数据库注入
    数据库注入Access、mysql、mssql、mongDB、postgresql、sqlite、oracle、sybase等#上节课JSON注入案例分析天池大数据众智平台-阿里云天池所以json注入时要在1、2、3上面去注入#简要学习各种数据库的注入特点数据库架构组成,数据库高权限操作Access是低等级的数据库,依......
  • 限流场景&限流方案的一些思考
    限流场景保护系统资源:限流可用于保护系统资源,防止系统被过度请求而导致资源耗尽或系统崩溃。例如,限制对数据库、缓存、消息队列等关键资源的访问速率,以确保系统的稳定性和可用性。防止恶意攻击:限流可用于防止恶意攻击和恶意请求,如暴力破解、DDoS攻击等。通过限制来自单个I......
  • 前后文无关文法和语言练习
    目录产生语言{a^nb^n|n>=0}的文法产生语言{a^nb^n|n>=0}的文法要构造一个产生语言{a^nb^n|n>=0}的文法,我们可以使用上下文无关文法(Context-FreeGrammar,CFG)。这个语言包含所有由相同数量的连续a字符和连续b字符组成的字符串。下面是一个可能的文法:S......
  • 再谈Redis的锁
    Redis:锁单机悲观锁参考实现流程加锁,如果失败,则放弃或重试占用,业务逻辑释放实现​INCR​:通过返回结果是不是0​SETNX​:通过判断结果是否为0​MSETNX​:一次性获取多个key的占用Redis:msetnx乐观锁定义乐观锁并不会直接对临界数据加锁,而是在对临......
  • 全排列
    #include<cctype>#include<iostream>#include<vector>#include<algorithm>usingnamespacestd;intmain(){ vector<int>numbers={1,2,3}; //从大到小排序 sort(numbers.begin(),numbers.end(),[](constint&a,constint&am......
  • 机器学习金融预测领域2023部分综述论文阅读记录
    23年的综述最近读了3篇,总结笔记如下:本期所有论文链接:2023综述https://www.alipan.com/s/ySur3StxKip点击链接保存,或者复制本段内容,打开「阿里云盘」APP,无需下载极速在线查看,视频原画倍速播放。(2023)A_Systematic_Survey_of_AI_Models_in_Financial_Mark评价:原文写的一般,可以......
  • 传统图像压缩方法的局限性
    目录传统方法的局限性端到端的基于学习的方法熵编码过程传统方法的局限性传统的方法基于分割的图像块,会产生伪影。编码器的各个组件之间依赖关系复杂,难以手动进行整体优化。单个模块得到较大提升后,模型整体可能不会有太大提高。端到端的基于学习的方法对模型整体进行联合......