首页 > 系统相关 >理解NodeJS多进程

理解NodeJS多进程

时间:2022-10-10 20:36:11浏览次数:81  
标签:socket NodeJS process cluster 理解 child 进程 data

序言

一次面试中,我提到自己用过pm2,面试接着问:「那你知道pm2父子进程通信方式吗」。我大概听说pm2有cluster模式,但不清楚父子进程如何通信。面试结束后把NodeJS的多进程重新整理了一下。

对于前端开发同学,一定很清楚js是单线程非阻塞的,这决定了NodeJS能够支持高性能的服务的开发。 JavaScript的单线程非阻塞特性让NodeJS适合IO密集型应用,因为JavaScript在访问磁盘/数据库/RPC等时候不需要阻塞等待结果,而是可以异步监听结果,同时继续向下执行。

但js不适合计算密集型应用,因为当JavaScript遇到耗费计算性能的任务时候,单线程的缺点就暴露出来了。后面的任务都要被阻塞,直到耗时任务执行完毕。

为了优化NodeJS不适合计算密集型任务的问题,NodeJS提供了多线程和多进程的支持。

多进程和多线程从两个方面对计算密集型任务进行了优化,异步和并发

  1. 异步,对于耗时任务,可以新建一个线程或者进程来执行,执行完毕再通知主线程/进程。

看下面例子,这是一个koa接口,里面有耗时任务,会阻塞其他任务执行。

const Koa = require('koa');
const app = new Koa();

app.use(async ctx => {
    const url = ctx.request.url;
    if (url === '/') {
        ctx.body = 'hello';
    }

    if (url === '/compute') {
        let sum = 0;
        for (let i = 0; i < 1e20; i++) {
            sum += i;    
        }
        ctx.body = `${sum}`;
    }
});

app.listen(3000, () => {
    console.log('http://localhost:300/ start')
});

可以通过多线程和多进程来解决这个问题。

NodeJS提供多线程模块worker_threads,其中Woker模块用来创建线程,parentPort用在子线程中,可以获取主线程引用,子线程通过parentPort.postMessage发送数据给主线程,主线程通过worker.on接受数据。

//api.js
const Koa = require('koa');
const app = new Koa();

const {Worker} = require('worker_threads');

app.use(async (ctx) => {
    const url = ctx.request.url;
    if (url === '/') {
        ctx.body = 'hello';
    }

    if (url === '/compute') {
        const sum = await new Promise(resolve => {
            const worker = new Worker(__dirname + '/compute.js');
            //接收信息
            worker.on('message', data => {
                resolve(data);
            })

        });
        ctx.body = `${sum}`;
    }
})

app.listen(3000, () => {
    console.log('http://localhost:3000/ start')
});


//computer.js
const {parentPort} = require('worker_threads')
let sum = 0;
for (let i = 0; i < 1e20; i++) {
    sum += i;
}

//发送信息
parentPort.postMessage(sum);

下面是使用多进程解决耗时任务的方法,多进程模块child_process提供了fork方法(后面会介绍更多创建子进程的方法),可以用来创建子进程,主进程通过fork返回值(worker)持有子进程的引用,并通过worker.on监听子进程发送的数据,子进程通过process.send给父进程发送数据。

//api.js
const Koa = require('koa');
const app = new Koa();

const {fork} = require('child_process');

app.use(async ctx => {
    const url = ctx.request.url;
    if (url === '/') {
        ctx.body = 'hello';
    }

    if (url === '/compute') {
        const sum = await new Promise(resolve => {
            const worker = fork(__dirname + '/compute.js');
            worker.on('message', data => {
                resolve(data);
            });
        });
        ctx.body = `${sum}`;
    }
});

app.listen(300, () => {
    console.log('http://localhost:300/ start');
});

//computer.js
let sum = 0;
for (let i = 0; i < 1e20; i++) {
    sum += i;
}
process.send(sum);

  1. 并发,为了可以更好地利用多核能力,通常会对同一个脚本创建多进程和多线程,数量和CPU核数相同,这样可以让任务并发执行,最大程度提升了任务执行效率。

本文重点讲解多进程的使用。

从实际应用角度,如果我们希望使用多进程,让我们的应用支持并发执行,提升应用性能,那么首先要创建多进程,然后进程运行的过程中难免涉及到进程之间的通信,包括父子进程通信和兄弟进程之间的通信,另外还有很重要的一点是进程的管理,因为创建了多个进程,那么来了一个任务应该交给哪个进程去执行呢?进程必然要支持后台执行(守护进程),这个又怎么实现呢?进程崩溃如何重启?重启过于频繁的不稳定进程又如何限制?如何操作进程的启动、停止、重启?

这一系列的进程管理工作都有相关的工具支持。

接下来就按照上面说明的创建进程、进程间通信、进程管理(cluster集群管理、进程管理工具:pm2和egg-cluster)。

创建多进程

child_process模块用来创建子进程,该模块提供了4个方法用于创建子进程

const {spawn, fork, exec, execFile} = require('child_process');

child_process.spawn(command[, args][, options])

child_process.fork(modulePath[, args][, options])

child_process.exec(command[, options][, callback])

child_process.execFile(file[, args][, options][, callback])

spawn会启动一个shell,并在shell上执行命令;spawn会在父子进程间建立IO流stdinstdoutstderrspawn返回一个子进程的引用,通过这个引用可以监听子进程状态,并接收子进程的输入流。

const { spawn } = require('child_process');
const ls = spawn('ls', ['-lh', '/usr']);

ls.stdout.on('data', (data) => {
  console.log(`stdout: ${data}`);
});

ls.stderr.on('data', (data) => {
  console.error(`stderr: ${data}`);
});

ls.on('close', (code) => {
  console.log(`child process exited with code ${code}`);
});

forkexecexecFile都是基于spawn扩展的。

execspawn不同,它接收一个回调作为参数,回调中会传入报错和IO流

const { exec } = require('child_process');
exec('cat ./test.txt', (error, stdout, stderr) => {
  if (error) {
    console.error(`exec error: ${error}`);
    return;
  }
  console.log(`stdout: ${stdout}`);
  console.error(`stderr: ${stderr}`);
});

execFileexec不同的是,它不会创建一个shell,而是直接执行可执行文件,因此效率比exec稍高一些,另外,它传入的第一个参数是可执行文件,第二个参数是执行可执行文件的参数。参考nodejs进阶视频讲解:进入学习

const { execFile } = require('child_process');
execFile('cat', ['./test.txt'], (error, stdout, stderr) => {
    if (error) {
      console.error(`exec error: ${error}`);
      return;
    }
    console.log(stdout);
});

fork支持传入一个NodeJS模块路径,而非shell命令,返回一个子进程引用,这个子进程的引用和父进程建立了一个内置的IPC通道,可以让父子进程通信。

// parent.js

var child_process = require('child_process');

var child = child_process.fork('./child.js');

child.on('message', function(m){
    console.log('message from child: ' + JSON.stringify(m));
});

child.send({from: 'parent'});


// child.js

process.on('message', function(m){
    console.log('message from parent: ' + JSON.stringify(m));
});

process.send({from: 'child'});

对于上面几个创建子进程的方法,有对应的同步版本。

spawnSyncexecSyncexecFileSync

进程间通信

进程间通信分为父子进程通信和兄弟进程通信,当然也可能涉及远程进程通信,这个会在后面提到,本文主要关注本地进程的通信。

父子进程通信可以通过标准IO流传递json

// 父进程
const { spawn } = require('child_process');

child = spawn('node', ['./stdio-child.js']);
child.stdout.setEncoding('utf8');
// 父进程-发
child.stdin.write(JSON.stringify({
    type: 'handshake',
    payload: '你好吖'
}));
// 父进程-收
child.stdout.on('data', function (chunk) {
  let data = chunk.toString();
  let message = JSON.parse(data);
  console.log(`${message.type} ${message.payload}`);
});

// ./stdio-child.js
// 子进程-收
process.stdin.on('data', (chunk) => {
  let data = chunk.toString();
  let message = JSON.parse(data);
  switch (message.type) {
    case 'handshake':
      // 子进程-发
      process.stdout.write(JSON.stringify({
        type: 'message',
        payload: message.payload + ' : hoho'
      }));
      break;
    default:
      break;
  }
});

使用fork创建的子进程,父子进程之间会建立内置IPC通道(不知道该IPC通道底层是使用管道还是socket实现)。(代码见“创建多进程小节”)

因此父子进程通信是NodeJS原生支持的。

下面我们看兄弟进程如何通信。

通常进程通信有几种方法:共享内存、消息队列、管道、socket、信号。

其中对于共享内存和消息队列,NodeJS并未提供原生的进程间通信支持,需要依赖第三方实现,比如通过C++shared-memory-disruptor addon插件实现共享内存的支持、通过redis、MQ实现消息队列的支持。

下面介绍在NodeJS中通过socket、管道、信号实现的进程间通信。

socket

socket是应用层与TCP/IP协议族通信的中间抽象层,是一种操作系统提供的进程间通信机制,是操作系统提供的,工作在传输层的网络操作API。

socket提供了一系列API,可以让两个进程之间实现客户端-服务端模式的通信。

通过socket实现IPC的方法可以分为两种:

  1. TCP/UDP socket,原本用于进行网络通信,实际就是两个远程进程间的通信,但两个进程既可以是远程也可以是本地,使用socket进行通信的方式就是一个进程建立server,另一个进程建立client,然后通过socket提供的能力进行通信。
  2. UNIX Domain socket,这是一套由操作系统支持的、和socket很相近的API,但用于IPC,名字虽然是UNIX,实际Linux也支持。socket 原本是为网络通讯设计的,但后来在 socket 的框架上发展出一种 IPC 机制,就是 UNIX domain socket。虽然网络 socket 也可用于同一台主机的进程间通讯(通过 loopback 地址 127.0.0.1),但是 UNIX domain socket 用于 IPC 更有效率:不需要经过网络协议栈,不需要打包拆包、计算校验和、维护序号和应答等,只是将应用层数据从一个进程拷贝到另一个进程。这是因为,IPC 机制本质上是可靠的通讯,而网络协议是为不可靠的通讯设计的。

开源的node-ipc方案就是使用了socket方案

NodeJS如何使用socket进行通信呢?答案是通过net模块实现,看下面的例子。

// server
const net = require('net');

net.createServer((stream => {
  stream.end(`hello world!\n`);
})).listen(3302, () => {
  console.log(`running ...`);
});

// client
const net = require('net');

const socket = net.createConnection({port: 3302});

socket.on('data', data => {
  console.log(data.toString());
});

UNIX Domain socket在NodeJS层面上提供的API和TCP socket类似,只是listen的是一个文件描述符,而不是端口,相应的,client连接的也是一个文件描述符(path)。

// 创建进程
const net = require('net')
const unixSocketServer = net.createServer(stream => {
  stream.on('data', data => {
    console.log(`receive data: ${data}`)
  })
});

unixSocketServer.listen('/tmp/test', () => {
  console.log('listening...');
});

// 其他进程

const net = require('net')

const socket = net.createConnection({path: '/tmp/test'})

socket.on('data', data => {
  console.log(data.toString());
});

socket.write('my name is vb');

// 输出结果

listening...

管道

管道是一种操作系统提供的进程通信方法,它是一种半双工通信,同一时间只能有一个方向的数据流。

管道本质上就是内核中的一个缓存,当进程创建一个管道后,Linux会返回两个文件描述符,一个是写入端的描述符(fd[1]),一个是输出端的描述符(fd[0]),可以通过这两个描述符往管道写入或者读取数据。

NodeJS中也是通过net模块实现管道通信,与socket区别是server listen的和client connect的都是特定格式的管道名。

管道的通信效率比较低下,一般不用它作为进程通信方案。

下面是使用net实现进程通信的示例。

var net = require('net');

var PIPE_NAME = "mypipe";
var PIPE_PATH = "\\.\pipe\" + PIPE_NAME;

var L = console.log;

var server = net.createServer(function(stream) {
    L('Server: on connection')

    stream.on('data', function(c) {
        L('Server: on data:', c.toString());
    });

    stream.on('end', function() {
        L('Server: on end')
        server.close();
    });

    stream.write('Take it easy!');
});

server.on('close',function(){
    L('Server: on close');
})

server.listen(PIPE_PATH,function(){
    L('Server: on listening');
})

// == Client part == //
var client = net.connect(PIPE_PATH, function() {
    L('Client: on connection');
})

client.on('data', function(data) {
    L('Client: on data:', data.toString());
    client.end('Thanks!');
});

client.on('end', function() {
    L('Client: on end');
})

// Server: on listening
// Client: on connection
// Server: on connection
// Client: on data: Take it easy!
// Server: on data: Thanks!
// Client: on end
// Server: on end
// Server: on close

信号

作为完整健壮的程序,需要支持常见的中断退出信号,使得程序能够正确的响应用户和正确的清理退出。

信号是操作系统杀掉进程时候给进程发送的消息,如果进程中没有监听信号并做处理,则操作系统一般会默认直接粗暴地杀死进程,如果进程监听信号,则操作系统不默认处理。

这种进程通信方式比较局限,只用在一个进程杀死另一个进程的情况。

在NodeJS中,一个进程可以杀掉另一个进程,通过制定要被杀掉的进程的id来实现:process.kill(pid, signal)/child_process.kill(pid, signal)

进程可以监听信号:

process.on('SIGINT', () => {
    console.log('ctl + c has pressed');
});

cluster

现在设想我们有了一个启动server的脚步,我们希望能更好地利用多核能力,启动多个进程来执行server脚本,另外我们还要考虑如何给多个进程分配请求。

上面的场景是一个很常见的需求:多进程管理,即一个脚本运行时候创建多个进程,那么如何对多个进程进行管理?

实际上,不仅是在server的场景有这种需求,只要是多进程都会遇到这种需求。而server的多进程还会遇到另一个问题:同一个server脚本监听的端口肯定相同,那启动多个进程时候,端口一定会冲突。

为了解决多进程的问题,并解决server场景的端口冲突问题,NodeJS提供了cluster模块。

这种同样一份代码在多个实例中运行的架构叫做集群,cluster就是一个NodeJS进程集群管理的工具。

cluster提供的能力:

  1. 创建子进程
  2. 解决多子进程监听同一个端口导致冲突的问题
  3. 负载均衡

cluster主要用于server场景,当然也支持非server场景。

先来看下cluster的使用

import cluster from 'cluster';
import http from 'http';
import { cpus } from 'os';
import process from 'process';

const numCPUs = cpus().length;

if (cluster.isPrimary) {
  console.log(`Primary ${process.pid} is running`);

  // Fork workers.
  for (let i = 0; i < numCPUs; i++) {
    cluster.fork();
  }

  cluster.on('exit', (worker, code, signal) => {
    console.log(`worker ${worker.process.pid} died`);
  });
} else {
  // Workers can share any TCP connection
  // In this case it is an HTTP server
  http.createServer((req, res) => {
    res.writeHead(200);
    res.end('hello world\n');
  }).listen(8000);

  console.log(`Worker ${process.pid} started`);
}

可以看到使用cluster.fork创建了子进程,实际上cluster.fork调用了child_process.fork来创建子进程。创建好后,cluster会自动进行负载均衡。

cluster支持设置负载均衡策略,有两种策略:轮询和操作系统默认策略。可以通过设置cluster.schedulingPolicy = cluster.SCHED_RR;指定轮询策略,设置cluster.schedulingPolicy = cluster.SCHED_NONE;指定用操作系统默认策略。也可以设置环境变量NODE_CLUSTER_SCHED_POLICYrr/none来实现。

让人比较在意的是,cluster是如何解决端口冲突问题的呢?

我们看到代码中使用了http.createServer,并监听了端口8000,但实际上子进程并未监听8000,net模块的server.listen方法(http继承自net)判断在cluster子进程中不监听端口,而是创建一个socket并发送到父进程,以此将自己注册到父进程,所以只有父进程监听了端口,子进程通过socket和父进程通信,当一个请求到来后,父进程会根据轮询策略选中一个子进程,然后将请求的句柄(其实就是一个socket)通过进程通信发送给子进程,子进程拿到socket后使用这个socket和客户端通信,响应请求。

那么net中又是如何判断是否是在cluster子进程中的呢?cluster.fork对进程做了标识,因此net可以区分出来。

cluster是一个典型的master-worker架构,一个master负责管理worker,而worker才是实际工作的进程。

进程管理:pm2与egg-cluster

除了集群管理,在实际应用运行时候,还有很多进程管理的工作,比如:进程的启动、暂停、重启、记录当前有哪些进程、进程的后台运行、守护进程监听进程崩溃重启、终止不稳定进程(频繁崩溃重启)等等。

社区也有比较成熟的工具做进程管理,比如pm2和egg-cluster

pm2

pm2是一个社区很流行的NodeJS进程管理工具,直观地看,它提供了几个非常好用的能力:

  1. 后台运行。
  2. 自动重启。
  3. 集群管理,支持cluster多进程模式。

其他的功能还包括0s reload、日志管理、终端监控、开发调试等等。

pm2的大概原理是,建立一个守护进程(daemon),用来管理机器上通过pm2启动的应用。当用户通过命令行执行pm2命令对应用进行操作时候,其实是在和daemon通信,daemon接收到指令后进行相应的操作。这时一种C/S架构,命令行相当于客户端(client),守护进程daemon相当于服务器(server),这种模式和docker的运行模式相同,docker也是有一个守护进程接收命令行的指令,再执行对应的操作。

客户端和daemon通过rpc进行通信,daemon是真正的“进程管理者”。

由于有守护进程,在启动应用时候,命令行使用pm2客户端通过rpc向daemon发送信息,daemon创建进程,这样进程不是由客户端创建的,而是daemon创建的,因此客户端退出也不会收到影响,这就是pm2启动的应用可以后台运行的原因。

daemon还会监控进程的状态,崩溃会自动重启(当然频繁重启的进程被认为是不稳定的进程,存在问题,不会一直重启),这样就实现了进程的自动重启。

pm2利用NodeJS的cluster模块实现了集群能力,当配置exec_modecluster时候,pm2就会自动使用cluster创建多个进程,也就有了负载均衡的能力。

egg-cluster

egg-cluster是egg项目开源的一个进程管理工具,它的作用和pm2类似,但两者也有很大的区别,比如pm2的进程模型是master-worker,master负责管理worker,worker负责执行具体任务。egg-cluster的进程模型是master-agent-worker,其中多出来的agent有什么作用呢?

有些工作其实不需要每个 Worker 都去做,如果都做,一来是浪费资源,更重要的是可能会导致多进程间资源访问冲突

既然有了pm2,为什么egg要自己开发一个进程管理工具呢?可以参考作者的回答

  1. PM2 的理念跟我们不一致,它的大部分功能我们用不上,用得上的部分却又做的不够极致。
  2. PM2 是AGPL 协议的,对企业应用不友好。

pm2虽然很强大,但还不能说完美,比如pm2并不支持master-agent-worker模型,而这个是实际项目中很常见的一个需求。因此egg-cluster基于实际的场景实现了进程管理的一系列功能。

答案

通过上面的介绍,我们知道了pm2使用cluster做集群管理,cluster又是使用child_process.fork来创建子进程,所以父子进程通信使用的是内置默认的IPC通道。

标签:socket,NodeJS,process,cluster,理解,child,进程,data
From: https://www.cnblogs.com/coder2028/p/16777171.html

相关文章

  • 深度理解NodeJS事件循环
    导读ALLTHETIME,我们写的的大部分javascript代码都是在浏览器环境下编译运行的,因此可能我们对浏览器的事件循环机制了解比Node.JS的事件循环更深入一些,但是最近写开始深......
  • 说说Nodejs高并发的原理
    写在前面我们先来看几个常见的说法nodejs是单线程+非阻塞I/O模型nodejs适合高并发nodejs适合I/O密集型应用,不适合CPU密集型应用在具体分析这几个说法是不是、为什......
  • 进程和计划任务管理
    引言:在生产环境工作中我们需要需要定时的进行文件的增删改查,每一次都人工操作比较繁琐所以我们可以制定一次性任务或周期性任务计划。一:程序和进程的关系1.1程序保存在......
  • 深入理解mv
     =====================================================以下来自:https://blog.51cto.com/baidutech/743731=========================mv操作深入浅出业务背景:存在两......
  • 我对软件工程的理解(之前写在“文章”一栏中,故再发一次)
     作为一个化学专业的学生,我对软件工程的理解还比较粗浅,辅修计算机是认为在当今时代计算机不仅是一门科学,也是一项强大的工具。我认为软件工程致力于构建有效、实用、高......
  • 驱动开发:内核通过PEB得到进程参数
    PEB结构(ProcessEnvirormentBlockStructure)其中文名是进程环境块信息,进程环境块内部包含了进程运行的详细参数信息,每一个进程在运行后都会存在一个特有的PEB结构,通过附......
  • 驱动开发:内核通过PEB得到进程参数
    PEB结构(ProcessEnvirormentBlockStructure)其中文名是进程环境块信息,进程环境块内部包含了进程运行的详细参数信息,每一个进程在运行后都会存在一个特有的PEB结构,通过附......
  • 初识内存中的数据——由浅入深理解程序的底层实现原理(一)
    引言:要想成为一名合格的开发者,掌握计算机系统工作原理是必须的,而在学这些之前应具有一门编程语言(汇编最好)的基础和一些计算机底层基础。本篇,我将从零开始一步步地探究高级......
  • CentOS设置服务守护进程
    title:CentOS设置服务守护进程categories:CentOStags:CentOSCentOS设置服务守护进程一.介绍Systemctl是linux系统继init.d之后的一个systemd工具,主要负责控制syst......
  • 31、并发编程(进程、线程、协程)
    31.1、操作系统:1、为什么要有操作系统:(1)介绍:现代计算机系统是由一个或者多个处理器,主存,磁盘,打印机,键盘,鼠标显示器,网络接口以及各种其他输入输出设备组成的复杂系统,每位程序员......