首页 > 系统相关 >记一次 .NET 某游戏服务后端 内存暴涨分析

记一次 .NET 某游戏服务后端 内存暴涨分析

时间:2023-07-13 13:23:30浏览次数:38  
标签:00000225 MEM xxx 7ff9858ab160 000 内存 暴涨 0000004c NET

一:背景

1. 讲故事

前几天有位朋友找到我,说他们公司的后端服务内存暴涨,而且CPU的一个核也被打满,让我帮忙看下怎么回事,一般来说内存暴涨的问题都比较好解决,就让朋友抓一个 dump 丢过来,接下来我们用 WinDbg 一探究竟。

二:WinDbg 分析

1. 到底是谁在暴涨

拿到 dump 之后,首先要判断是托管还是非托管问题,这决定了我们后续的探究方向,我们直接用 !address -summary + !dumpheap -stat 即可。


0:000> !address -summary

--- State Summary ---------------- RgnCount ----------- Total Size -------- %ofBusy %ofTotal
MEM_FREE                                212     7dfe`fb4e7000 ( 125.996 TB)           98.43%
MEM_RESERVE                             368      200`1dbd6000 (   2.000 TB)  99.82%    1.56%
MEM_COMMIT                             1741        0`e6f33000 (   3.609 GB)   0.18%    0.00%

0:000> !dumpheap -stat
Statistics:
              MT    Count    TotalSize Class Name
...
7ff9858ad8e0   409,869   258,383,328 System.Collections.Generic.Dictionary<System.Int64, xxx.xxx>+Entry[]
0225cc98e1f0   283,654   479,330,568 Free
7ff9858ab160         8 2,147,484,480 xxx.xxxUnit[]

0:000> !dumpheap -mt 7ff9858ab160
         Address               MT           Size
    022585dd26b8     7ff9858ab160             24 
    02258beb3c78     7ff9858ab160             24 
    02259f272aa8     7ff9858ab160            152 
    0225a8ae0858     7ff9858ab160            152 
    0225a8d015c8     7ff9858ab160            152 
    0225a91da130     7ff9858ab160            152 
    0225a9395ad0     7ff9858ab160            152 
    022694c91020     7ff9858ab160  2,147,483,672 

Statistics:
          MT Count     TotalSize Class Name
7ff9858ab160     8 2,147,484,480 xxx.xxxUnit[]
Total 8 objects, 2,147,484,480 bytes

从卦象看,3.6G 的提交内存,xxx.xxxUnit[] 就占用了 2.1G,可以确定当前是托管内存暴涨,并且也看到了内存都被 022694c91020 这个对象给吃掉了,接下来就是看下这个对象到底被谁持有着? 使用 !gcroot 即可。


0:000> !gcroot 022694c91020  
Caching GC roots, this may take a while.
Subsequent runs of this command will be faster.

Found 0 unique roots.

我去,从卦中看当前的 022694c91020 没有引用根,也就表明这个对象应该会在后续过程中被回收,但这里有一个问题,这个 xxx.xxxUnit[] 到底定义在代码何处呢? 知道在何处,就可以完美的解决问题。

2. 数组到底定义在何处

可以仔细想一想,xxx.xxxUnit[] 没有被 GC 回收,从侧面也表明它可能刚分配不久,并且是一个局部变量,既然是局部变量,就可以反向找到是哪一个线程分配的,如果线程栈还残留着 返回地址 信息,就可以反推出是哪一个方法,有了这个思路,接下来就可以动手挖了。

按照编码人的习惯, xxx.xxxUnit[] 肯定是某一个 List<xxxUnit> 集合,可以用内存搜索解决。


0:000> s-q 0 L?0xffffffffffffffff 022694c91020
00000225`a89530a0  00000226`94c91020 0cca3690`0cca3690

0:000> !lno 00000225`a89530a0
Before:  00000225a8953098           32 (0x20)	System.Collections.Generic.List`1[[xxx.xxxUnit, xx.xx]]
After:   00000225a89530b8         1224 (0x4c8)	Free
Heap local consistency confirmed.

从卦中看,果然用的是一个 List<xxx.xxxUnit> 集合,万事开头难,接下来继续反向搜索,如果线程栈还有残留的话,就可以找到它所属的线程栈。


0:000> s-q 0 L?0xffffffffffffffff 00000225a8953098
0000004c`417ecd98  00000225`a8953098 00000005`00000000
0000004c`417eceb8  00000225`a8953098 0cca3695`00000000
00000225`f1070180  00000225`a8953098 00000225`d7d287f8
00000225`f10701e0  00000225`a8953098 00000225`d7d287f8

0:000> !address 0000004c`417ecd98

Usage:                  Stack
Base Address:           0000004c`417d1000
End Address:            0000004c`417f0000
Region Size:            00000000`0001f000 ( 124.000 kB)
State:                  00001000          MEM_COMMIT
Protect:                00000004          PAGE_READWRITE
Type:                   00020000          MEM_PRIVATE
Allocation Base:        0000004c`41670000
Allocation Protect:     00000004          PAGE_READWRITE
More info:              ~0k


Content source: 1 (target), length: 3268

从卦中的 More info: 信息来看,它是属于 0 号线程,如果你不相信的话,可以拿 417d1000 去内存段验证下,输出如下:


0:000> !address -f:Stack

        BaseAddress      EndAddress+1        RegionSize     Type       State                 Protect             Usage
--------------------------------------------------------------------------------------------------------------------------
      4c`41670000       4c`417cc000        0`0015c000 MEM_PRIVATE MEM_RESERVE                                    Stack      [~0; ec8.1584]
      4c`417cc000       4c`417d1000        0`00005000 MEM_PRIVATE MEM_COMMIT  PAGE_READWRITE | PAGE_GUARD        Stack      [~0; ec8.1584]
      4c`417d1000       4c`417f0000        0`0001f000 MEM_PRIVATE MEM_COMMIT  PAGE_READWRITE                     Stack      [~0; ec8.1584]

既然找到了是 0 号线程,接下来可以用 !clrstack 观察下,奇怪的是 0 号线程啥都没有,我怀疑这个 dump 抓的有问题,可以截图为证。

看不到任何线程栈信息,这就难搞了,接下来的路在何方呢?

3. 还有希望吗

作为调试人,一定要在绝望中寻找希望,突破口就是考验线程栈布局的理解,可以在栈上往小地址找,会找到子函数的返回地址(returnAddress),即类似的格式: 0x00007ffxxxxxx,这个地址和 List<xxx.xxxUnit> 都同属一个方法,如果不清楚的话画个简图如下:

如图中所述找到 子方法 ReturnAddress 地址值即可,接下来使用windbg 的 dqs 命令外加 !ip2md 观察方法名即可。


0:000> dqs 0000004c`417ecd98 L-50
0000004c`417ecb18  0000004c`417ed678
0000004c`417ecb20  00000225`b9e78518
0000004c`417ecb28  00007ff9`85f3f861
0000004c`417ecb30  00000225`ba22b8c0
0000004c`417ecb38  0000001a`00000027
0000004c`417ecb40  00000225`00000027
0000004c`417ecb48  00000225`84aef0f8
...
0000004c`417ecd88  0000001a`00000000
0000004c`417ecd90  00000225`82278a68

0:000> !ip2md 00007ff9`85f3f861
MethodDesc:   00007ff983ef1af0
Method Name:          xxx.xxx.xxxRange(xxx,xxx,xxx,xxx)
Class:                00007ff983ef1a58
MethodTable:          00007ff983ef1b70
mdToken:              0000000006000A47
Module:               00007ff983d9c060
IsJitted:             yes
Current CodeAddr:     00007ff985f3f160
Version History:
  ILCodeVersion:      0000000000000000
  ReJIT ID:           0
  IL Addr:            00000225ef226c48
     CodeAddr:           00007ff985f3f160  (MinOptJitted)
     NativeCodeVersion:  0000000000000000

在卦中获取到这些信息之后,接下来看下 xxx.xxx.xxxRange 中是否有 List<xxxUnit> 集合,为什么高达 2个G,经过仔细研读代码,终于发现了问题,截图如下:

从图中看,核心点就是这里的 num++,在某些情况下会导致在 for 中出不来继而不断的 List.Add ,最终导致问题的发生。

再回头结合朋友说的内存暴涨,伴随一个 CPU 核心被打满,完全就可以解释了。

三:总结

这是一个比较隐晦的逻辑bug导致的内存暴涨,如果仅仅从代码层面去分析,相信你可能要花费好久的时间,从高级调试的角度看,在 List 无根的情况下如何快速的找到 List 所属的代码块,也是对基础知识的一个考验。
图片名称

标签:00000225,MEM,xxx,7ff9858ab160,000,内存,暴涨,0000004c,NET
From: https://www.cnblogs.com/huangxincheng/p/17550195.html

相关文章

  • ASP.NET Core 6框架揭秘实例演示[40]:基于角色的授权
    原文:https://www.cnblogs.com/artech/p/inside-asp-net-core-6-40.htmlASP.NET应用并没有对如何定义授权策略做硬性规定,所以我们完全根据用户具有的任意特性(如性别、年龄、学历、所在地区、宗教信仰、政治面貌等)来判断其是否具有获取目标资源或者执行目标操作的权限,但是针对角色......
  • kubernetes之 存储卷
    第八部分kubernetes之存储卷脱离节点而存在共享存储。存储卷不属于容器,他属于pod缓存,宿主机,不具备真正意义上存储,宿主机退役后,存储资源随之丢失,除非宿主机上也挂载独立的卷信息。容器真正意义上的存储卷类型emptyDir:pod删除,存储内容也删除,只能当临时存储空间或缓存使用,无真正意......
  • 网络net服务名配置
    网络net服务名配置oracle服务连接其他服务器上的oracle服务器需要配置net服务。如果需要连接169.254.10.121这台机器的oracle服务服务端需要确认的信息需要服务的端口号默认是1521需要让对方对1521这个端口进行放行,取消防火墙设置。要进行测试网络是否通畅ping......
  • net core-异步,同步理解
    并发: 一个车间只有一台机器,所有的工人都需要完成相同的工作,谁先抢到这个机器谁先工作,其余人需要等待。并行: 一个车间有4台机器,有4个工人,四个工人分别使用四台机器,同时执行任务,不用等待其它工人任务执行完毕。单线程: 当有三件事要处理,乙需要在甲之后处理,同时丙需要在乙之......
  • .Net8的AOT引导程序BootStrap
    前言.Net8的本地预编机器码AOT,它几乎进行了100%的自举。微软为了摆脱C++的钳制,做了很多努力。也就是代码几乎是用C#重写,包括了虚拟机,GC,内存模型等等。而需要C++做的,也就仅仅是引导程序,本篇通过代码来看下这段至关重要的引导程序的运作模式。原文:.Net8的AOT引导程序BootStrap概......
  • ubuntu20使用iptables-persistent libfakeroot libxtables-dev netfilter-persistent
    实施防火墙是保护服务器安全的重要一步。其中很大一部分是决定将对您的网络实施流量限制的单个规则和策略。像iptables这样的防火墙还允许您对应用规则的结构框架有发言权。在本指南中,您将学习如何构建防火墙,作为更复杂规则集的基础。该防火墙将主要关注提供合理的默认值和建立......
  • 使用C#编写.NET分析器(完结)
    译者注这是在Datadog公司任职的KevinGosse大佬使用C#编写.NET分析器的系列文章之一,在国内只有很少很少的人了解和研究.NET分析器,它常被用于APM(应用性能诊断)、IDE、诊断工具中,比如Datadog的APM,VisualStudio的分析器以及Rider和Reshaper等等。之前只能使用C++编写,自从.NETNative......
  • Java虚拟机(JVM):第五幕:自动内存管理 - HotSpot算法细节以及低延迟垃圾收集器
    一、HotSpot算法细节1、根节点枚举:所有的收集器在根节点枚举的时候,必须暂停用户线程,同时要保证一致性的快照中得以进行。一致性:整个枚举期间执行子系统看起来就像是冻结在某一个时间点上,不会出现分析过程中,根节点的对象应用关系还在不断变化的情况。2、安全点:用户程序执......
  • .net 温故知新【12】:Asp.Net Core WebAPI 中的Rest风格
    RPCRPC(RemoteProcedureCall),远程过程调用),这种RPC形式的API组织形态是类和方法的形式。所以API的请求往往是一个动词用来标识接口的意思,比如https://xxxx/GetStudent?id=1和https://xxxx/AddStudent这种风格,并且往往没有规范需要我们去查看接口定义文档。HTTP方法基本只用GE......
  • 一个高性能、低内存文件上传流.Net组件
    推荐一个用于轻松实现文件上传功能的组件。项目简介一个基于.NET平台的开源项目,提供了一个简单易用的API,可以在Web应用程序中快速集成文件上传功能。优化多部分流式文件上传性能:减少25%的CPU使用量、50%内存。项目特点1、简单易用的API: 提供了简单的API,可以轻松地集......