ebpf简介
eBPF是一项革命性的技术,起源于 Linux 内核,可以在操作系统内核等特权上下文中运行沙盒程序。它可以安全有效地扩展内核的功能,而无需更改内核源代码或加载内核模块。 比如,使用ebpf可以追踪任何内核导出函数的参数,返回值,以实现kernel hook 的效果;通过ebpf还可以在网络封包到达内核协议栈之前就进行处理,这可以实现流量控制,甚至隐蔽通信。
ebpf追踪
ebpf本质上只是运行在linux 内核中的虚拟机,要发挥其强大的能力还是要跟linux kernel 自带的追踪功能搭配:
-
kprobe
-
uprobe
-
tracepoint
-
USDT
通常可以通过以下三种工具使用ebpf:
-
bcc
-
libbpf
-
bpftrace
bcc
BCC 是一个用于创建高效内核跟踪和操作程序的工具包,包括几个有用的工具和示例。它利用扩展的 BPF(Berkeley Packet Filters),正式名称为 eBPF,这是 Linux 3.15 中首次添加的新功能。BCC 使用的大部分内容都需要 Linux 4.1 及更高版本。
源码安装bcc v0.25.0
首先clone bcc 源码仓库
git clone https://github.com/iovisor/bcc.git git checkout v0.25.0 git submodule init git submodule update
bcc 从v0.10.0开始使用libbpf 并通过submodule 的形式加入源码树,所以这里需要更新并拉取子模块
安装依赖
apt install flex bison libdebuginfod-dev libclang-14-dev
编译bcc
mkdir build && cd build cmake -DCMAKE_BUILD_TYPE=Release .. make -j #n取决于机器的cpu核心数
编译安装完成后,在python3中就能使用bcc模块了 安装bcc时会在/usr/share/bcc目录下安装bcc自带的示例脚本和工具脚本,以及manual 文档 可以直接使用man -M /usr/share/bcc/man <keyword>来查询
使用python + bcc 跟踪内核函数
bcc 自带的工具execsnoop可以跟踪execv系统调用,其源代码如下:
#!/usr/bin/python # @lint-avoid-python-3-compatibility-imports # # execsnoop Trace new processes via exec() syscalls. # For Linux, uses BCC, eBPF. Embedded C. # # USAGE: execsnoop [-h] [-T] [-t] [-x] [-q] [-n NAME] [-l LINE] # [--max-args MAX_ARGS] # # This currently will print up to a maximum of 19 arguments, plus the process # name, so 20 fields in total (MAXARG). # # This won't catch all new processes: an application may fork() but not exec(). # # Copyright 2016 Netflix, Inc. # Licensed under the Apache License, Version 2.0 (the "License") # # 07-Feb-2016 Brendan Gregg Created this. from __future__ import print_function from bcc import BPF from bcc.containers import filter_by_containers from bcc.utils import ArgString, printb import bcc.utils as utils import argparse import re import time import pwd from collections import defaultdict from time import strftime def parse_uid(user): try: result = int(user) except ValueError: try: user_info = pwd.getpwnam(user) except KeyError: raise argparse.ArgumentTypeError( "{0!r} is not valid UID or user entry".format(user)) else: return user_info.pw_uid else: # Maybe validate if UID < 0 ? return result # arguments examples = """examples: ./execsnoop # trace all exec() syscalls ./execsnoop -x # include failed exec()s ./execsnoop -T # include time (HH:MM:SS) ./execsnoop -U # include UID ./execsnoop -u 1000 # only trace UID 1000 ./execsnoop -u user # get user UID and trace only them ./execsnoop -t # include timestamps ./execsnoop -q # add "quotemarks" around arguments ./execsnoop -n main # only print command lines containing "main" ./execsnoop -l tpkg # only print command where arguments contains "tpkg" ./execsnoop --cgroupmap mappath # only trace cgroups in this BPF map ./execsnoop --mntnsmap mappath # only trace mount namespaces in the map """ parser = argparse.ArgumentParser( description="Trace exec() syscalls", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=examples) parser.add_argument("-T", "--time", action="store_true", help="include time column on output (HH:MM:SS)") parser.add_argument("-t", "--timestamp", action="store_true", help="include timestamp on output") parser.add_argument("-x", "--fails", action="store_true", help="include failed exec()s") parser.add_argument("--cgroupmap", help="trace cgroups in this BPF map only") parser.add_argument("--mntnsmap", help="trace mount namespaces in this BPF map only") parser.add_argument("-u", "--uid", type=parse_uid, metavar='USER', help="trace this UID only") parser.add_argument("-q", "--quote", action="store_true", help="Add quotemarks (\") around arguments." ) parser.add_argument("-n", "--name", type=ArgString, help="only print commands matching this name (regex), any arg") parser.add_argument("-l", "--line", type=ArgString, help="only print commands where arg contains this line (regex)") parser.add_argument("-U", "--print-uid", action="store_true", help="print UID column") parser.add_argument("--max-args", default="20", help="maximum number of arguments parsed and displayed, defaults to 20") parser.add_argument("--ebpf", action="store_true", help=argparse.SUPPRESS) args = parser.parse_args() # define BPF program bpf_text = """ #include <uapi/linux/ptrace.h> #include <linux/sched.h> #include <linux/fs.h> #define ARGSIZE 128 enum event_type { EVENT_ARG, EVENT_RET, }; struct data_t { u32 pid; // PID as in the userspace term (i.e. task->tgid in kernel) u32 ppid; // Parent PID as in the userspace term (i.e task->real_parent->tgid in kernel) u32 uid; char comm[TASK_COMM_LEN]; enum event_type type; char argv[ARGSIZE]; int retval; }; BPF_PERF_OUTPUT(events); static int __submit_arg(struct pt_regs *ctx, void *ptr, struct data_t *data) { bpf_probe_read_user(data->argv, sizeof(data->argv), ptr); events.perf_submit(ctx, data, sizeof(struct data_t)); return 1; } static int submit_arg(struct pt_regs *ctx, void *ptr, struct data_t *data) { const char *argp = NULL; bpf_probe_read_user(&argp, sizeof(argp), ptr); if (argp) { return __submit_arg(ctx, (void *)(argp), data); } return 0; } int syscall__execve(struct pt_regs *ctx, const char __user *filename, const char __user *const __user *__argv, const char __user *const __user *__envp) { u32 uid = bpf_get_current_uid_gid() & 0xffffffff; UID_FILTER if (container_should_be_filtered()) { return 0; } // create data here and pass to submit_arg to save stack space (#555) struct data_t data = {}; struct task_struct *task; data.pid = bpf_get_current_pid_tgid() >> 32; task = (struct task_struct *)bpf_get_current_task(); // Some kernels, like Ubuntu 4.13.0-generic, return 0 // as the real_parent->tgid. // We use the get_ppid function as a fallback in those cases. (#1883) data.ppid = task->real_parent->tgid; bpf_get_current_comm(&data.comm, sizeof(data.comm)); data.type = EVENT_ARG; __submit_arg(ctx, (void *)filename, &data); // skip first arg, as we submitted filename #pragma unroll for (int i = 1; i < MAXARG; i++) { if (submit_arg(ctx, (void *)&__argv[i], &data) == 0) goto out; } // handle truncated argument list char ellipsis[] = "..."; __submit_arg(ctx, (void *)ellipsis, &data); out: return 0; } int do_ret_sys_execve(struct pt_regs *ctx) { if (container_should_be_filtered()) { return 0; } struct data_t data = {}; struct task_struct *task; u32 uid = bpf_get_current_uid_gid() & 0xffffffff; UID_FILTER data.pid = bpf_get_current_pid_tgid() >> 32; data.uid = uid; task = (struct task_struct *)bpf_get_current_task(); // Some kernels, like Ubuntu 4.13.0-generic, return 0 // as the real_parent->tgid. // We use the get_ppid function as a fallback in those cases. (#1883) data.ppid = task->real_parent->tgid; bpf_get_current_comm(&data.comm, sizeof(data.comm)); data.type = EVENT_RET; data.retval = PT_REGS_RC(ctx); events.perf_submit(ctx, &data, sizeof(data)); return 0; } """ bpf_text = bpf_text.replace("MAXARG", args.max_args) if args.uid: bpf_text = bpf_text.replace('UID_FILTER', 'if (uid != %s) { return 0; }' % args.uid) else: bpf_text = bpf_text.replace('UID_FILTER', '') bpf_text = filter_by_containers(args) + bpf_text if args.ebpf: print(bpf_text) exit() # initialize BPF b = BPF(text=bpf_text) execve_fnname = b.get_syscall_fnname("execve") b.attach_kprobe(event=execve_fnname, fn_name="syscall__execve") b.attach_kretprobe(event=execve_fnname, fn_name="do_ret_sys_execve") # header if args.time: print("%-9s" % ("TIME"), end="") if args.timestamp: print("%-8s" % ("TIME(s)"), end="") if args.print_uid: print("%-6s" % ("UID"), end="") print("%-16s %-7s %-7s %3s %s" % ("PCOMM", "PID", "PPID", "RET", "ARGS")) class EventType(object): EVENT_ARG = 0 EVENT_RET = 1 start_ts = time.time() argv = defaultdict(list) # This is best-effort PPID matching. Short-lived processes may exit # before we get a chance to read the PPID. # This is a fallback for when fetching the PPID from task->real_parent->tgip # returns 0, which happens in some kernel versions. def get_ppid(pid): try: with open("/proc/%d/status" % pid) as status: for line in status: if line.startswith("PPid:"): return int(line.split()[1]) except IOError: pass return 0 # process event def print_event(cpu, data, size): event = b["events"].event(data) skip = False if event.type == EventType.EVENT_ARG: argv[event.pid].append(event.argv) elif event.type == EventType.EVENT_RET: if event.retval != 0 and not args.fails: skip = True if args.name and not re.search(bytes(args.name), event.comm): skip = True if args.line and not re.search(bytes(args.line), b' '.join(argv[event.pid])): skip = True if args.quote: argv[event.pid] = [ b"\"" + arg.replace(b"\"", b"\\\"") + b"\"" for arg in argv[event.pid] ] if not skip: if args.time: printb(b"%-9s" % strftime("%H:%M:%S").encode('ascii'), nl="") if args.timestamp: printb(b"%-8.3f" % (time.time() - start_ts), nl="") if args.print_uid: printb(b"%-6d" % event.uid, nl="") ppid = event.ppid if event.ppid > 0 else get_ppid(event.pid) ppid = b"%d" % ppid if ppid > 0 else b"?" argv_text = b' '.join(argv[event.pid]).replace(b'\n', b'\\n') printb(b"%-16s %-7d %-7s %3d %s" % (event.comm, event.pid, ppid, event.retval, argv_text)) try: del(argv[event.pid]) except Exception: pass # loop with callback to print_event b["events"].open_perf_buffer(print_event) while 1: try: b.perf_buffer_poll() except KeyboardInterrupt: exit()
此工具使用kprobe和kretprobe跟踪execv系统调用的进入和退出事件,并将进程名,进程参数,pid,ppid以及返回代码输出到终端。
【----帮助网安学习,以下所有学习资料免费领!加vx:yj009991,备注 “博客园” 获取!】
① 网安学习成长路径思维导图
② 60+网安经典常用工具包
③ 100+SRC漏洞分析报告
④ 150+网安攻防实战技术电子书
⑤ 最权威CISSP 认证考试指南+题库
⑥ 超1800页CTF实战技巧手册
⑦ 最新网安大厂面试题合集(含答案)
⑧ APP客户端安全检测指南(安卓+IOS)
使用python + bcc 跟踪用户函数
bcc中使用uprobe跟踪glibc malloc 函数的工具,并统计malloc 内存的总量。
#!/usr/bin/python # # mallocstacks Trace malloc() calls in a process and print the full # stack trace for all callsites. # For Linux, uses BCC, eBPF. Embedded C. # # This script is a basic example of the new Linux 4.6+ BPF_STACK_TRACE # table API. # # Copyright 2016 GitHub, Inc. # Licensed under the Apache License, Version 2.0 (the "License") from __future__ import print_function from bcc import BPF from bcc.utils import printb from time import sleep import sys if len(sys.argv) < 2: print("USAGE: mallocstacks PID [NUM_STACKS=1024]") exit() pid = int(sys.argv[1]) if len(sys.argv) == 3: try: assert int(sys.argv[2]) > 0, "" except (ValueError, AssertionError) as e: print("USAGE: mallocstacks PID [NUM_STACKS=1024]") print("NUM_STACKS must be a non-zero, positive integer") exit() stacks = sys.argv[2] else: stacks = "1024" # load BPF program b = BPF(text=""" #include <uapi/linux/ptrace.h> BPF_HASH(calls, int); BPF_STACK_TRACE(stack_traces, """ + stacks + """); int alloc_enter(struct pt_regs *ctx, size_t size) { int key = stack_traces.get_stackid(ctx, BPF_F_USER_STACK); if (key < 0) return 0; // could also use `calls.increment(key, size);` u64 zero = 0, *val; val = calls.lookup_or_try_init(&key, &zero); if (val) { (*val) += size; } return 0; }; """) b.attach_uprobe(name="c", sym="malloc", fn_name="alloc_enter", pid=pid) print("Attaching to malloc in pid %d, Ctrl+C to quit." % pid) # sleep until Ctrl-C try: sleep(99999999) except KeyboardInterrupt: pass calls = b.get_table("calls") stack_traces = b.get_table("stack_traces") for k, v in reversed(sorted(calls.items(), key=lambda c: c[1].value)): print("%d bytes allocated at:" % v.value) if k.value > 0 : for addr in stack_traces.walk(k.value): printb(b"\t%s" % b.sym(addr, pid, show_offset=True))
libbpf
libbpf是linux 源码树中的ebpf 开发包。同时在github上也有独立的代码仓库。 这里推荐使用libbpf-bootstrap这个项目
libbpf-bootstrap
libbpf-bootstrap是使用 libbpf 和 BPF CO-RE 进行 BPF 应用程序开发的脚手架项目 首先克隆libbpf-bootstrap仓库
然后同步子模块
cd libbpf-bootstrap git submodule init git submodule update
注意,子模块中包含bpftool,bpftool中还有子模块需要同步 在bpftool目录下重复以上步骤
libbpf-bootstrap中包含以下目录
这里进入example/c中,这里包含一些示例工具 直接make编译 等编译完成后,在此目录下会生成可执行文件
先运行一下bootstrap,这里要用root权限运行
bootstrap程序会追踪所有的exec和exit系统调用,每次程序运行时,bootstrap就会输出运行程序的信息。
再看看minimal,这是一个最小ebpf程序。
运行后输出大量信息,最后有提示让我们运行sudo cat /sys/kernel/debug/tracing/trace_pipe来查看输出 运行这个命令
minimal 会追踪所有的write系统调用,并打印出调用write的进程的pid 这里看到pid为11494,ps 查询一下这个进程,发现就是minimal
来看看minimal的源码,这个程序主要有两个C文件组成,minimal.c和minimal.bpf.c前者为此程序的源码,后者为插入内核虚拟机的ebpf代码。
// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* Copyright (c) 2020 Facebook */ #include <stdio.h> #include <unistd.h> #include <sys/resource.h> #include <bpf/libbpf.h> #include "minimal.skel.h" static int libbpf_print_fn(enum libbpf_print_level level, const char *format, va_list args) { return vfprintf(stderr, format, args); } int main(int argc, char **argv) { struct minimal_bpf *skel; int err; libbpf_set_strict_mode(LIBBPF_STRICT_ALL); /* Set up libbpf errors and debug info callback */ libbpf_set_print(libbpf_print_fn); /* Open BPF application */ skel = minimal_bpf__open(); if (!skel) { fprintf(stderr, "Failed to open BPF skeleton\n"); return 1; } /* ensure BPF program only handles write() syscalls from our process */ skel->bss->my_pid = getpid(); /* Load & verify BPF programs */ err = minimal_bpf__load(skel); if (err) { fprintf(stderr, "Failed to load and verify BPF skeleton\n"); goto cleanup; } /* Attach tracepoint handler */ err = minimal_bpf__attach(skel); if (err) { fprintf(stderr, "Failed to attach BPF skeleton\n"); goto cleanup; } printf("Successfully started! Please run `sudo cat /sys/kernel/debug/tracing/trace_pipe` " "to see output of the BPF programs.\n"); for (;;) { /* trigger our BPF program */ fprintf(stderr, "."); sleep(1); } cleanup minimal_bpf__destroy(skel); return -err; }
首先看一下minimal.c的内容,在main函数中首先调用了libbpf_set_strict_mode(LIBBPF_STRICT_ALL);设置为libbpf v1.0模式。此模式下错误代码直接通过函数返回值传递,不再需要检查errno。 之后调用libbpf_set_print(libbpf_print_fn);将程序中一个自定义输出函数设置为调试输出的回调函数,即运行minimal的这些输出全都时通过libbpf_print_fn输出的。
然后在minimal.c:24调用生成的minimal.skel.h中的预定义函数minimal_bpfopen打开bpf程序,这里返回一个minimal_bpf类型的对象(c中使用结构体模拟对象)。 在31行将minimal_bpf对象的bss子对象的my_pid属性设置为当前进程pid 这里minimal_bpf对象和bss都由minimal.bpf.c代码编译而来。minimal.bpf.c经过clang 编译连接,生成minimal.bpf.o,这是一个elf文件,其中包含bss段,这个段内通常储存着minimal.bpf.c中所有经过初始化的变量。 skel->bss->my_pid = getpid();就是直接将minimal.bpf.o中的my_pid设置为minimal进程的pid。 之后在34行调用minimal_bpfload(skel);加载并验证ebpf程序。 41行调用minimal_bpfattach(skel);使ebpf程序附加到bpf源码中声明的跟踪点上。 此时ebpf程序已经开始运行了。ebpf中通过bpf_printk输出的内容会写入linux debugFS中的trace_pipe中。可以使用sudo cat /sys/kernel/debug/tracing/trace_pipe输出到终端里。 之后minimal程序会进入一个死循环,以维持ebpf程序的运行。当用户按下发送SIGINT信号后就会调用minimal_bpfdestroy(skel);卸载内核中的ebpf程序,之后退出。
接下来看minimal.bpf.c 这是ebpf程序的源码,是要加载到内核中的ebpf虚拟机中运行的,由于在运行在内核中,具有得天独厚的地理位置,可以访问系统中所有资源,再配合上众多的tracepoint,就可以发挥出强大的追踪能力。 下面是minimal.bpf.c的源码
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright (c) 2020 Facebook */ #include <linux/bpf.h> #include <bpf/bpf_helpers.h> char LICENSE[] SEC("license") = "Dual BSD/GPL"; int my_pid = 0; SEC("tp/syscalls/sys_enter_write") int handle_tp(void *ctx) { int pid = bpf_get_current_pid_tgid() >> 32; if (pid != my_pid) return 0; bpf_printk("BPF triggered from PID %d.\n", pid); return 0; }
minimal.bpf.c会被clang 编译器编译为ebpf字节码,然后通过bpftool将其转换为minimal.skel.h头文件,以供minimal.c使用。 此代码中定义并初始化了一个全局变量my_pid,经过编译连接后此变量会进入elf文件的bss段中。 然后,代码中定义了一个函数int handle_tp(void *ctx),此函数中通过调用bpf_get_current_pid_tgid() >> 32获取到调用此函数的进程pid
然后比较pid与my_pid的值,如果相同则调用bpf_printk输出"BPF triggered from PID %d\n” 这里由于handle_tp函数是通过SEC宏附加在write系统调用上,所以在调用write()时,handle_tp也会被调用,从而实现追踪系统调用的功能。 SEC宏在bpf程序中处于非常重要的地位。可以参考此文档 SEC宏可以指定ebpf函数附加的点,包括系统调用,静态tracepoint,动态的kprobe和uprobe,以及USDT等等。 Libbpf 期望 BPF 程序使用SEC()宏注释,其中传入的字符串参数SEC()确定 BPF 程序类型和可选的附加附加参数,例如 kprobe 程序要附加的内核函数名称或 cgroup 程序的挂钩类型。该SEC()定义最终被记录为 ELF section name。
通过llvm-objdump 可以看到编译后的epbf程序文件包含一个以追踪点命名的section
ebpf字节码dump
ebpf程序可以使用llvm-objdump -d dump 出ebpf字节码
bpftrace
bpftrace 提供了一种类似awk 的脚本语言,通过编写脚本,配合bpftrace支持的追踪点,可以实现非常强大的追踪功能
安装
sudo apt-get update sudo apt-get install -y \ bison \ cmake \ flex \ g++ \ git \ libelf-dev \ zlib1g-dev \ libfl-dev \ systemtap-sdt-dev \ binutils-dev \ libcereal-dev \ llvm-12-dev \ llvm-12-runtime \ libclang-12-dev \ clang-12 \ libpcap-dev \ libgtest-dev \ libgmock-dev \ asciidoctor git clone https://github.com/iovisor/bpftrace mkdir bpftrace/build; cd bpftrace/build; ../build-libs.sh cmake -DCMAKE_BUILD_TYPE=Release .. make -j8 sudo make install
bpftrace命令行参数
# bpftrace USAGE: bpftrace [options] filename bpftrace [options] -e 'program' OPTIONS: -B MODE output buffering mode ('line', 'full', or 'none') -d debug info dry run -dd verbose debug info dry run -e 'program' execute this program -h show this help message -I DIR add the specified DIR to the search path for include files. --include FILE adds an implicit #include which is read before the source file is preprocessed. -l [search] list probes -p PID enable USDT probes on PID -c 'CMD' run CMD and enable USDT probes on resulting process -q keep messages quiet -v verbose messages -k emit a warning when a bpf helper returns an error (except read functions) -kk check all bpf helper functions --version bpftrace version ENVIRONMENT: BPFTRACE_STRLEN [default: 64] bytes on BPF stack per str() BPFTRACE_NO_CPP_DEMANGLE [default: 0] disable C++ symbol demangling BPFTRACE_MAP_KEYS_MAX [default: 4096] max keys in a map BPFTRACE_MAX_PROBES [default: 512] max number of probes bpftrace can attach to BPFTRACE_MAX_BPF_PROGS [default: 512] max number of generated BPF programs BPFTRACE_CACHE_USER_SYMBOLS [default: auto] enable user symbol cache BPFTRACE_VMLINUX [default: none] vmlinux path used for kernel symbol resolution BPFTRACE_BTF [default: none] BTF file EXAMPLES: bpftrace -l '*sleep*' list probes containing "sleep" bpftrace -e 'kprobe:do_nanosleep { printf("PID %d sleeping...\n", pid); }' trace processes calling sleep bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }' count syscalls by process name
bpftrace程序语法规则
bpftrace语法由以下一个或多个action block结构组成,且语法关键字与c语言类似
probe[,probe] /predicate/ { action }
-
probe:探针,可以使用bpftrace -l 来查看支持的所有tracepoint和kprobe探针
-
Predicate(可选):在 / / 中指定 action 执行的条件。如果为True,就执行 action
-
action:在事件触发时运行的程序,每行语句必须以 ; 结尾,并且用{}包起来
-
//:单行注释
-
/**/:多行注释
-
->:访问c结构体成员,例如:bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm, str(args->filename)); }'
-
struct:结构声明,在bpftrace脚本中可以定义自己的结构
bpftrace 单行指令
bpftrace -e 选项可以指定运行一个单行程序 1、追踪openat系统调用
bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm, str(args->filename)); }'
2、系统调用计数
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @[comm] = count(); }'
3、计算每秒发生的系统调用数量
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @ = count(); } interval:s:1 { print(@); clear(@); }'
bpftrace脚本文件
还可以将bpftrace程序作为一个脚本文件,并且使用shebang#!/usr/local/bin/bpftrace可以使其独立运行 例如:
1 #!/usr/local/bin/bpftrace 2 3 tracepoint:syscalls:sys_enter_nanosleep 4 { 5 printf("%s is sleeping.\n", comm); 6 }
bpftrace探针类型
bpftrace支持以下类型的探针:
-
kprobe- 内核函数启动
-
kretprobe- 内核函数返回
-
uprobe- 用户级功能启动
-
uretprobe- 用户级函数返回
-
tracepoint- 内核静态跟踪点
-
usdt- 用户级静态跟踪点
-
profile- 定时采样
-
interval- 定时输出
-
software- 内核软件事件
-
hardware- 处理器级事件
更多靶场实验练习、网安学习资料,请点击这里>>