首页 > 数据库 >美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?

美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?

时间:2024-09-13 11:04:32浏览次数:10  
标签:加锁 lock 美团 Redis key import 超时 分布式

文章很长,且持续更新,建议收藏起来,慢慢读!疯狂创客圈总目录 博客园版 为您奉上珍贵的学习资源 :

免费赠送 :《尼恩Java面试宝典》 持续更新+ 史上最全 + 面试必备 2000页+ 面试必备 + 大厂必备 +涨薪必备
免费赠送 :《尼恩技术圣经+高并发系列PDF》 ,帮你 实现技术自由,完成职业升级, 薪酬猛涨!加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷1)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷2)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领
免费赠送 经典图书:《Java高并发核心编程(卷3)加强版》 面试必备 + 大厂必备 +涨薪必备 加尼恩免费领

免费赠送 资源宝库: Java 必备 百度网盘资源大合集 价值>10000元 加尼恩领取


美团面试:Redis锁如何续期?Redis锁超时,任务没完怎么办?

尼恩特别说明: 尼恩的文章,都会在 《技术自由圈》 公号 发布, 并且维护最新版本。 如果发现图片 不可见, 请去 《技术自由圈》 公号 查找

尼恩说在前面

在40岁老架构师 尼恩的读者交流群(50+)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的面试题:

Redis分布式锁,过期怎么办? 如何自动续期?

Redis分布式锁过期,任务没完成怎么办?

最近有小伙伴在面试 美团,又遇到了相关的面试题。小伙伴懵了,因为没有遇到过,所以支支吾吾的说了几句,面试官不满意,面试挂了。

所以,尼恩给大家做一下系统化、体系化的梳理,使得大家内力猛增,可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”,然后实现”offer直提”。

当然,这道面试题,以及参考答案,也会收入咱们的 《尼恩Java面试宝典PDF》V171版本,供后面的小伙伴参考,提升大家的 3高 架构、设计、开发水平。

最新《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》的PDF,请关注本公众号【技术自由圈】获取,回复:领电子书

Redis分布式锁过期怎么办?

尼恩先简单的总结一下,两大核心方案,大家收藏起来,毒打面试官。

在这里插入图片描述

两大Redis 分布式

本文重点介绍Redis分布式锁,分为两个维度进行介绍:

(1)基于Jedis手工造轮子分布式锁

(2)介绍Redission 分布式锁的使用和原理。

分布式锁一般有如下的特点:

  • 互斥性: 同一时刻只能有一个线程持有锁
  • 可重入性: 同一节点上的同一个线程如果获取了锁之后能够再次获取锁
  • 锁超时:和J.U.C中的锁一样支持锁超时,防止死锁
  • 高性能和高可用: 加锁和解锁需要高效,同时也需要保证高可用,防止分布式锁失效
  • 具备阻塞和非阻塞性:能够及时从阻塞状态中被唤醒

基于Jedis 的API实现分布式锁

我们首先讲解 Jedis 普通分布式锁实现,并且是纯手工的模式,从最为基础的Redis命令开始。

只有充分了解与分布式锁相关的普通Redis命令,才能更好的了解高级的Redis分布式锁的实现,因为高级的分布式锁的实现完全基于普通Redis命令。

Redis几种架构

Redis发展到现在,几种常见的部署架构有:

  • 单机模式;
  • 主从模式;
  • 哨兵模式;
  • 集群模式;

从分布式锁的角度来说, 无论是单机模式、主从模式、哨兵模式、集群模式,其原理都是类同的。

只是主从模式、哨兵模式、集群模式的更加的高可用、或者更加高并发。

所以,接下来先基于单机模式,基于Jedis手工造轮子实现自己的分布式锁。

首先看两个命令:

Redis分布式锁机制,主要借助setnx和expire两个命令完成。

setnx命令:

SETNX 是SET if Not eXists的简写。

  • 将 key 的值设为 value,当且仅当 key 不存在;

  • 若给定的 key 已经存在,则 SETNX 不做任何动作。

下面为客户端使用示例:

127.0.0.1:6379> set lock "unlock"
OK
127.0.0.1:6379> setnx lock "unlock"
(integer) 0
127.0.0.1:6379> setnx lock "lock"
(integer) 0
127.0.0.1:6379> 

expire命令:

expire命令为 key 设置生存时间,当 key 过期时(生存时间为 0 ),它会被自动删除.

expire 格式为:

EXPIRE key seconds

下面为客户端使用示例:

127.0.0.1:6379> expire lock 10
(integer) 1
127.0.0.1:6379> ttl lock
8

基于Jedis API的分布式锁的总体流程:

通过Redis的setnx、expire命令可以实现简单的锁机制:

  • key不存在时创建,并设置value和过期时间,返回值为1;成功获取到锁;
  • 如key存在时直接返回0,抢锁失败;
  • 持有锁的线程释放锁时,手动删除key; 或者过期时间到,key自动删除,锁释放。

线程调用setnx方法成功返回1认为加锁成功,其他线程要等到当前线程业务操作完成释放锁后,才能再次调用setnx加锁成功。

在这里插入图片描述

以上简单redis分布式锁的问题:

如果出现了这么一个问题:如果setnx是成功的,但是expire设置失败,一旦出现了释放锁失败,或者没有手工释放,那么这个锁永远被占用,其他线程永远也抢不到锁。

所以,需要保障setnx和expire两个操作的原子性。

简单来说,原子性就是下面的三点:

  • 要么 setnx和expire 全部执行,
  • 要么 setnx和expire 全部不执行,
  • setnx和expire 二者不能分开。

解决的办法有两种:

  • 使用set的命令时,同时设置过期时间,不再单独使用 expire命令
  • 使用lua脚本,将加锁的命令放在lua脚本中原子性的执行

简单加锁:使用set的命令时,同时设置过期时间

使用set的命令时,同时设置过期时间的示例如下:

127.0.0.1:6379> set unlock "234" EX 100 NX
(nil)
127.0.0.1:6379> 
127.0.0.1:6379> set test "111" EX 100 NX
OK

这样就完美的解决了分布式锁的原子性; set 命令的完整格式:

set key value [EX seconds] [PX milliseconds] [NX|XX]


EX seconds:设置失效时长,单位秒
PX milliseconds:设置失效时长,单位毫秒
NX:key不存在时设置value,成功返回OK,失败返回(nil)
XX:key存在时设置value,成功返回OK,失败返回(nil)

使用set命令实现加锁操作,先展示加锁的简单代码实习,再带大家慢慢解释为什么这样实现。

加锁的简单代码实现

package com.crazymaker.springcloud.standard.lock;


@Slf4j
@Data
@AllArgsConstructor
public class JedisCommandLock {

    private  RedisTemplate redisTemplate;

    private static final String LOCK_SUCCESS = "OK";
    private static final String SET_IF_NOT_EXIST = "NX";
    private static final String SET_WITH_EXPIRE_TIME = "PX";

    /**
     * 尝试获取分布式锁
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @param expireTime 超期时间
     * @return 是否获取成功
     */
    public static   boolean tryGetDistributedLock(Jedis jedis, String lockKey, String requestId, int expireTime) {

        String result = jedis.set(lockKey, requestId, SET_IF_NOT_EXIST, SET_WITH_EXPIRE_TIME, expireTime);

        if (LOCK_SUCCESS.equals(result)) {
            return true;
        }
        return false;

    }

  

}

可以看到,我们加锁用到了Jedis的set Api

jedis.set(String key, String value, String nxxx, String expx, int time)

这个set()方法一共有五个形参:

  • 第一个为key,我们使用key来当锁,因为key是唯一的。

  • 第二个为value,我们传的是requestId,很多童鞋可能不明白,有key作为锁不就够了吗,为什么还要用到value?原因就是我们在上面讲到可靠性时,分布式锁要满足第四个条件解铃还须系铃人,通过给value赋值为requestId,我们就知道这把锁是哪个请求加的了,在解锁的时候就可以有依据。

    requestId可以使用UUID.randomUUID().toString()方法生成。

  • 第三个为nxxx,这个参数我们填的是NX,意思是SET IF NOT EXIST,即当key不存在时,我们进行set操作;若key已经存在,则不做任何操作;

  • 第四个为expx,这个参数我们传的是PX,意思是我们要给这个key加一个过期的设置,具体时间由第五个参数决定。

  • 第五个为time,与第四个参数相呼应,代表key的过期时间。

总的来说,执行上面的set()方法就只会导致两种结果:

  1. 当前没有锁(key不存在),那么就进行加锁操作,并对锁设置个有效期,同时value表示加锁的客户端。
  2. 已有锁存在,不做任何操作。

心细的童鞋就会发现了,我们的加锁代码满足前面描述的四个条件中的三个。

  • 首先,set()加入了NX参数,可以保证如果已有key存在,则函数不会调用成功,也就是只有一个客户端能持有锁,满足互斥性。

  • 其次,由于我们对锁设置了过期时间,即使锁的持有者后续发生崩溃而没有解锁,锁也会因为到了过期时间而自动解锁(即key被删除),不会被永远占用(而发生死锁)。

  • 最后,因为我们将value赋值为requestId,代表加锁的客户端请求标识,那么在客户端在解锁的时候就可以进行校验是否是同一个客户端。

  • 由于我们只考虑Redis单机部署的场景,所以容错性我们暂不考虑。

基于Jedis 的API实现简单解锁代码

还是先展示代码,再带大家慢慢解释为什么这样实现。

解锁的简单代码实现

package com.crazymaker.springcloud.standard.lock;


@Slf4j
@Data
@AllArgsConstructor
public class JedisCommandLock {

  

    private static final Long RELEASE_SUCCESS = 1L;

    /**
     * 释放分布式锁
     * @param jedis Redis客户端
     * @param lockKey 锁
     * @param requestId 请求标识
     * @return 是否释放成功
     */
    public static boolean releaseDistributedLock(Jedis jedis, String lockKey, String requestId) {

        String script = "if redis.call('get', KEYS[1]) == ARGV[1] then return redis.call('del', KEYS[1]) else return 0 end";
        Object result = jedis.eval(script, Collections.singletonList(lockKey), Collections.singletonList(requestId));

        if (RELEASE_SUCCESS.equals(result)) {
            return true;
        }
        return false;

    }

}

那么这段Lua代码的功能是什么呢?

其实很简单,首先获取锁对应的value值,检查是否与requestId相等,如果相等则删除锁(解锁)。

第一行代码,我们写了一个简单的Lua脚本代码。

第二行代码,我们将Lua代码传到jedis.eval()方法里,并使参数KEYS[1]赋值为lockKey,ARGV[1]赋值为requestId。eval()方法是将Lua代码交给Redis服务端执行。

那么为什么要使用Lua语言来实现呢?

因为要确保上述操作是原子性的。那么为什么执行eval()方法可以确保原子性,源于Redis的特性.

简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命

错误示例1

最常见的解锁代码就是直接使用 jedis.del() 方法删除锁,这种不先判断锁的拥有者而直接解锁的方式,会导致任何客户端都可以随时进行解锁,即使这把锁不是它的。

public static void wrongReleaseLock1(Jedis jedis, String lockKey) {
    jedis.del(lockKey);
}

错误示例2

这种解锁代码乍一看也是没问题,甚至我之前也差点这样实现,与正确姿势差不多,唯一区别的是分成两条命令去执行,代码如下:

public static void wrongReleaseLock2(Jedis jedis, String lockKey, String requestId) {
        
    // 判断加锁与解锁是不是同一个客户端
    if (requestId.equals(jedis.get(lockKey))) {
        // 若在此时,这把锁突然不是这个客户端的,则会误解锁
        jedis.del(lockKey);
    }

}

基于Lua脚本实现分布式锁

lua脚本的好处

前面提到,在redis中执行lua脚本,有如下的好处:

那么为什么要使用Lua语言来实现呢?

因为要确保上述操作是原子性的。那么为什么执行eval()方法可以确保原子性,源于Redis的特性.

简单来说,就是在eval命令执行Lua代码的时候,Lua代码将被当成一个命令去执行,并且直到eval命令执行完成,Redis才会执行其他命

所以:

大部分的开源框架(如 redission)中的分布式锁组件,都是用纯lua脚本实现的。

题外话: lua脚本是高并发、高性能的必备脚本语言

有关lua的详细介绍,请参见以下书籍:

清华大学出版社 出版的,尼恩的《Java高并发核心编程 卷3 加强版》

基于纯Lua脚本的分布式锁的执行流程

加锁和删除锁的操作,使用纯lua进行封装,保障其执行时候的原子性。

基于纯Lua脚本实现分布式锁的执行流程,大致如下:

在这里插入图片描述

加锁的Lua脚本: lock.lua

--- -1 failed
--- 1 success
---
local key = KEYS[1]
local requestId = KEYS[2]
local ttl = tonumber(KEYS[3])
local result = redis.call('setnx', key, requestId)
if result == 1 then
    --PEXPIRE:以毫秒的形式指定过期时间
    redis.call('pexpire', key, ttl)
else
    result = -1;
    -- 如果value相同,则认为是同一个线程的请求,则认为重入锁
    local value = redis.call('get', key)
    if (value == requestId) then
        result = 1;
        redis.call('pexpire', key, ttl)
    end
end
--  如果获取锁成功,则返回 1
return result

解锁的Lua脚本: unlock.lua:

--- -1 failed
--- 1 success

-- unlock key
local key = KEYS[1]
local requestId = KEYS[2]
local value = redis.call('get', key)
if value == requestId then
    redis.call('del', key);
    return 1;
end
return -1

两个文件,放在资源文件夹下备用:

在这里插入图片描述

在Java中调用lua脚本,完成加锁操作

package com.crazymaker.springcloud.standard.lock;

import com.crazymaker.springcloud.common.exception.BusinessException;
import com.crazymaker.springcloud.common.util.IOUtil;
import com.crazymaker.springcloud.standard.context.SpringContextUtil;
import com.crazymaker.springcloud.standard.lua.ScriptHolder;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.data.redis.core.RedisCallback;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.data.redis.core.script.RedisScript;

import java.util.ArrayList;
import java.util.List;

@Slf4j
public class InnerLock {

    private RedisTemplate redisTemplate;


    public static final Long LOCKED = Long.valueOf(1);
    public static final Long UNLOCKED = Long.valueOf(1);
    public static final int EXPIRE = 2000;

    String key;
    String requestId;  // lockValue 锁的value ,代表线程的uuid

    /**
     * 默认为2000ms
     */
    long expire = 2000L;


    private volatile boolean isLocked = false;
    private RedisScript lockScript;
    private RedisScript unLockScript;


    public InnerLock(String lockKey, String requestId) {
        this.key = lockKey;
        this.requestId = requestId;
        lockScript = ScriptHolder.getLockScript();
        unLockScript = ScriptHolder.getUnlockScript();
    }

    /**
     * 抢夺锁
     */
    public void lock() {
        if (null == key) {
            return;
        }
        try {
            List<String> redisKeys = new ArrayList<>();
            redisKeys.add(key);
            redisKeys.add(requestId);
            redisKeys.add(String.valueOf(expire));

            Long res = (Long) getRedisTemplate().execute(lockScript, redisKeys);
            isLocked = false;
        } catch (Exception e) {
            e.printStackTrace();
            throw BusinessException.builder().errMsg("抢锁失败").build();
        }
    }

    /**
     * 有返回值的抢夺锁
     *
     * @param millisToWait
     */
    public boolean lock(Long millisToWait) {
        if (null == key) {
            return false;
        }
        try {
            List<String> redisKeys = new ArrayList<>();
            redisKeys.add(key);
            redisKeys.add(requestId);
            redisKeys.add(String.valueOf(millisToWait));
            Long res = (Long) getRedisTemplate().execute(lockScript, redisKeys);

            return res != null && res.equals(LOCKED);
        } catch (Exception e) {
            e.printStackTrace();
            throw BusinessException.builder().errMsg("抢锁失败").build();
        }

    }

    //释放锁
    public void unlock() {
        if (key == null || requestId == null) {
            return;
        }
        try {
            List<String> redisKeys = new ArrayList<>();
            redisKeys.add(key);
            redisKeys.add(requestId);
            Long res = (Long) getRedisTemplate().execute(unLockScript, redisKeys);

//            boolean unlocked = res != null && res.equals(UNLOCKED);


        } catch (Exception e) {
            e.printStackTrace();
            throw BusinessException.builder().errMsg("释放锁失败").build();

        }
    }

    private RedisTemplate getRedisTemplate() {
        if(null==redisTemplate)
        {
            redisTemplate= (RedisTemplate) SpringContextUtil.getBean("stringRedisTemplate");
        }
        return redisTemplate;
    }
}

在Java中调用lua脚本,完成加锁操作

下一步,实现Lock接口, 完成JedisLock的分布式锁。

其加锁操作,通过调用 lock.lua脚本完成,代码如下:

package com.crazymaker.springcloud.standard.lock;

import com.crazymaker.springcloud.common.exception.BusinessException;
import com.crazymaker.springcloud.common.util.ThreadUtil;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

@Slf4j
@Data
@AllArgsConstructor
public class JedisLock implements Lock {

    private RedisTemplate redisTemplate;

    RedisScript<Long> lockScript = null;
    RedisScript<Long> unLockScript = null;

    public static final int DEFAULT_TIMEOUT = 2000;
    public static final Long LOCKED = Long.valueOf(1);
    public static final Long UNLOCKED = Long.valueOf(1);
    public static final Long WAIT_GAT = Long.valueOf(200);
    public static final int EXPIRE = 2000;


    String key;
    String lockValue;  // lockValue 锁的value ,代表线程的uuid

    /**
     * 默认为2000ms
     */
    long expire = 2000L;

    public JedisLock(String lockKey, String lockValue) {
        this.key = lockKey;
        this.lockValue = lockValue;
    }

    private volatile boolean isLocked = false;

    private Thread thread;

    /**
     * 获取一个分布式锁 , 超时则返回失败
     *
     * @return 获锁成功 - true | 获锁失败 - false
     */
    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {

        //本地可重入
        if (isLocked && thread == Thread.currentThread()) {
            return true;
        }
        expire = unit != null ? unit.toMillis(time) : DEFAULT_TIMEOUT;
        long startMillis = System.currentTimeMillis();
        Long millisToWait = expire;

        boolean localLocked = false;

        int turn = 1;
        while (!localLocked) {

            localLocked = this.lockInner(expire);
            if (!localLocked) {
                millisToWait = millisToWait - (System.currentTimeMillis() - startMillis);
                startMillis = System.currentTimeMillis();
                if (millisToWait > 0L) {
                    /**
                     * 还没有超时
                     */
                    ThreadUtil.sleepMilliSeconds(WAIT_GAT);
                    log.info("睡眠一下,重新开始,turn:{},剩余时间:{}", turn++, millisToWait);
                } else {
                    log.info("抢锁超时");
                    return false;
                }
            } else {
                isLocked = true;
                localLocked = true;
            }
        }
        return isLocked;
    }


  
    /**
     * 有返回值的抢夺锁
     *
     * @param millisToWait
     */
    public boolean lockInner(Long millisToWait) {
        if (null == key) {
            return false;
        }
        try {
            List<String> redisKeys = new ArrayList<>();
            redisKeys.add(key);
            redisKeys.add(lockValue);
            redisKeys.add(String.valueOf(millisToWait));
            Long res = (Long) redisTemplate.execute(lockScript, redisKeys);

            return res != null && res.equals(LOCKED);
        } catch (Exception e) {
            e.printStackTrace();
            throw BusinessException.builder().errMsg("抢锁失败").build();
        }

    }

   
}

通过实现JUC的显示锁Lock接口,实现一个简单的分布式锁

其解锁操作,通过调用unlock.lua脚本完成,代码如下:

package com.crazymaker.springcloud.standard.lock;

import com.crazymaker.springcloud.common.exception.BusinessException;
import com.crazymaker.springcloud.common.util.ThreadUtil;
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.RedisScript;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;

@Slf4j
@Data
@AllArgsConstructor
public class JedisLock implements Lock {

    private RedisTemplate redisTemplate;

    RedisScript<Long> lockScript = null;
    RedisScript<Long> unLockScript = null;

    //释放锁
    @Override
    public void unlock() {
        if (key == null || requestId == null) {
            return;
        }
        try {
            List<String> redisKeys = new ArrayList<>();
            redisKeys.add(key);
            redisKeys.add(requestId);
            Long res = (Long) redisTemplate.execute(unLockScript, redisKeys);

        } catch (Exception e) {
            e.printStackTrace();
            throw BusinessException.builder().errMsg("释放锁失败").build();

        }
    }
  
   
}

编写RedisLockService用于管理JedisLock

编写个分布式锁服务,用于加载lua脚本,创建 分布式锁,代码如下:

package com.crazymaker.springcloud.standard.lock;

import com.crazymaker.springcloud.common.util.IOUtil;
import lombok.Data;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.lang3.StringUtils;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.data.redis.core.script.RedisScript;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;

@Slf4j
@Data
public class RedisLockService
{

    private RedisTemplate redisTemplate;

    static String lockLua = "script/lock.lua";
    static String unLockLua = "script/unlock.lua";
    static RedisScript<Long> lockScript = null;
    static RedisScript<Long> unLockScript = null;
    {
        String script = IOUtil.loadJarFile(RedisLockService.class.getClassLoader(),lockLua);
//        String script = FileUtil.readString(lockLua, Charset.forName("UTF-8" ));
        if(StringUtils.isEmpty(script))
        {
            log.error("lua load failed:"+lockLua);
        }

        lockScript = new DefaultRedisScript<>(script, Long.class);

//        script = FileUtil.readString(unLockLua, Charset.forName("UTF-8" ));
        script =  IOUtil.loadJarFile(RedisLockService.class.getClassLoader(),unLockLua);
        if(StringUtils.isEmpty(script))
        {
            log.error("lua load failed:"+unLockLua);
        }
        unLockScript = new DefaultRedisScript<>(script, Long.class);

    }

    public RedisLockService(RedisTemplate redisTemplate)
    {
        this.redisTemplate = redisTemplate;
    }


    public Lock getLock(String lockKey, String lockValue) {
        JedisLock lock=new JedisLock(lockKey,lockValue);
        lock.setRedisTemplate(redisTemplate);
        lock.setLockScript(lockScript);
        lock.setUnLockScript(unLockScript);
        return lock;
    }
}

测试用例

接下来,终于可以上测试用例了

package com.crazymaker.springcloud.lock;

@Slf4j
@RunWith(SpringRunner.class)
@SpringBootTest(classes = {DemoCloudApplication.class})
// 指定启动类
public class RedisLockTest {

    @Resource
    RedisLockService redisLockService;

    private ExecutorService pool = Executors.newFixedThreadPool(10);

    @Test
    public void testLock() {
        int threads = 10;
        final int[] count = {0};
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                String lockValue = UUID.randomUUID().toString();

                try {
                    Lock lock = redisLockService.getLock("test:lock:1", lockValue);
                    boolean locked = lock.tryLock(10, TimeUnit.SECONDS);

                    if (locked) {
                        for (int j = 0; j < 1000; j++) {
                            count[0]++;
                        }

                        log.info("count = " + count[0]);
                        lock.unlock();
                    } else {
                        System.out.println("抢锁失败");
                    }


                } catch (Exception e) {
                    e.printStackTrace();
                }
                countDownLatch.countDown();
            });
        }
        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println("10个线程每个累加1000为: = " + count[0]);
        //输出统计结果
        float time = System.currentTimeMillis() - start;

        System.out.println("运行的时长为(ms):" + time);
        System.out.println("每一次执行的时长为(ms):" + time / count[0]);

    }

}

执行用例,结果如下:

2021-05-04 23:02:11.900  INFO 22120 --- [pool-1-thread-7] c.c.springcloud.lock.RedisLockTest       LN:50 count = 6000
2021-05-04 23:02:11.901  INFO 22120 --- [pool-1-thread-1] c.c.springcloud.standard.lock.JedisLock  LN:81 睡眠一下,重新开始,turn:3,剩余时间:9585
2021-05-04 23:02:11.902  INFO 22120 --- [pool-1-thread-1] c.c.springcloud.lock.RedisLockTest       LN:50 count = 7000
2021-05-04 23:02:12.100  INFO 22120 --- [pool-1-thread-4] c.c.springcloud.standard.lock.JedisLock  LN:81 睡眠一下,重新开始,turn:3,剩余时间:9586
2021-05-04 23:02:12.101  INFO 22120 --- [pool-1-thread-5] c.c.springcloud.standard.lock.JedisLock  LN:81 睡眠一下,重新开始,turn:3,剩余时间:9585
2021-05-04 23:02:12.101  INFO 22120 --- [pool-1-thread-8] c.c.springcloud.standard.lock.JedisLock  LN:81 睡眠一下,重新开始,turn:3,剩余时间:9585
2021-05-04 23:02:12.101  INFO 22120 --- [pool-1-thread-4] c.c.springcloud.lock.RedisLockTest       LN:50 count = 8000
2021-05-04 23:02:12.102  INFO 22120 --- [pool-1-thread-8] c.c.springcloud.lock.RedisLockTest       LN:50 count = 9000
2021-05-04 23:02:12.304  INFO 22120 --- [pool-1-thread-5] c.c.springcloud.standard.lock.JedisLock  LN:81 睡眠一下,重新开始,turn:4,剩余时间:9383
2021-05-04 23:02:12.307  INFO 22120 --- [pool-1-thread-5] c.c.springcloud.lock.RedisLockTest       LN:50 count = 10000
10个线程每个累加1000为: = 10000
运行的时长为(ms):827.0
每一次执行的时长为(ms):0.0827

STW导致的锁过期问题

下面有一个简单的使用锁的例子,在10秒内占着锁:

  //写数据到文件
function writeData(filename, data) {
    boolean locked = lock.tryLock(10, TimeUnit.SECONDS);
    if (!locked) {
        throw 'Failed to acquire lock';
    }

    try {
        //将数据写到文件
        var file = storage.readFile(filename);
        var updated = updateContents(file, data);
        storage.writeFile(filename, updated);
    } finally {
        lock.unlock();
    }
}

问题是:

  • 如果在写文件过程中,发生了 fullGC,并且其时间跨度较长, 超过了10秒,

  • 那么,由于锁的有效期就是 10s,这时候任务没有执行完成,分布式锁就自动过期了。

在此过程中,client2 抢到锁,写了文件。

回到 client1: client1 的fullGC完成后,也继续写文件,注意,此时client1 的并没有占用锁,此时写入会导致文件数据错乱,发生线程安全问题。

这就是STW导致的锁过期问题。

STW导致的锁过期问题,具体如下图所示:

在这里插入图片描述

锁过期问题 的解决方案

锁过期问题,大概的解决方案 有2种:

1: 模拟CAS乐观锁的方式,增加版本号

2:watch dog自动延期机制

方式一:模拟CAS乐观锁的方式,增加版本号

1: 模拟CAS乐观锁的方式,增加版本号(如下图中的token)

CAS乐观锁 的方法也很简单:

在每次写操作时加入一个 token。 token 可以是一个递增的数字(lock service 可以做到),每次有 client 申请锁就递增一次。比如:

  • client1 的token 是33
  • client2 的token 是34

紧接着 client1 活过来之后尝试写入数据,自身 token 33 比 34 小,因此client1 的写入操作被拒绝了。

在这里插入图片描述

此方案如果要实现,需要调整业务逻辑与之配合,所以会入侵代码。

当然,如果能把这个方案说清楚了,也能像他一样,拿到年薪65W的offer:

上岸奇迹:中厂大龄34岁,被裁8月收一大厂offer, 年薪65W,逆天改命!

方式二:watch dog自动延期机制

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

简单!

只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

redission,采用的就是这种方案, 此方案不会入侵业务代码。

watch dog看门狗 的作用是在锁没有过期之前,不断的延长锁的有效期。

在这里插入图片描述

默认情况下,锁的过期时间是 30 秒,看门狗的续期时间是 10 秒,

也可以通过修改 Config.lockWatchdogTimeout 来指定。

上面的两个方法,后面尼恩会在《尼恩Java面试宝典》配套视频里边做详细介绍。

为啥推荐使用Redission

Redission 就是 使用 看门狗的机制。

作为 Java 开发人员,我们若想在程序中集成 Redis,必须使用 Redis 的第三方库。目前大家使用的最多的第三方库是jedis。

和SpringCloud gateway一样,Redisson也是基于Netty实现的,是更高性能的第三方库。 所以,这里推荐大家使用Redission替代 jedis。

Redisson简介

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还实现了可重入锁(Reentrant Lock)、公平锁(Fair Lock、联锁(MultiLock)、 红锁(RedLock)、 读写锁(ReadWriteLock)等,还提供了许多分布式服务。

img

Redisson提供了使用Redis的最简单和最便捷的方法。Redisson的宗旨是促进使用者对Redis的关注分离(Separation of Concern),从而让使用者能够将精力更集中地放在处理业务逻辑上。

img

Redisson与Jedis的对比

1.概况对比

Jedis是Redis的java实现的客户端,其API提供了比较全面的的Redis命令的支持,Redisson实现了分布式和可扩展的的java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序,事物,管道,分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中的放在处理业务逻辑上。

2.可伸缩性

Jedis使用阻塞的I/O,且其方法调用都是同步的,程序流程要等到sockets处理完I/O才能执行,不支持异步,Jedis客户端实例不是线程安全的,所以需要通过连接池来使用Jedis。

Redisson使用非阻塞的I/O和基于Netty框架的事件驱动的通信层,其方法调用时异步的。Redisson的API是线程安全的,所以操作单个Redisson连接来完成各种操作。

3.第三方框架整合

Redisson在Redis的基础上实现了java缓存标准规范;Redisson还提供了Spring Session回话管理器的实现。

Redission 的源码地址:

官网: https://redisson.org/

github: https://github.com/redisson/redisson#quick-start

特性 & 功能:

  • 支持 Redis 单节点(single)模式、哨兵(sentinel)模式、主从(Master/Slave)模式以及集群(Redis Cluster)模式

  • 程序接口调用方式采用异步执行和异步流执行两种方式

  • 数据序列化,Redisson 的对象编码类是用于将对象进行序列化和反序列化,以实现对该对象在 Redis 里的读取和存储

  • 单个集合数据分片,在集群模式下,Redisson 为单个 Redis 集合类型提供了自动分片的功能

  • 提供多种分布式对象,如:Object Bucket,Bitset,AtomicLong,Bloom Filter 和 HyperLogLog 等

  • 提供丰富的分布式集合,如:Map,Multimap,Set,SortedSet,List,Deque,Queue 等

  • 分布式锁和同步器的实现,可重入锁(Reentrant Lock),公平锁(Fair Lock),联锁(MultiLock),红锁(Red Lock),信号量(Semaphonre),可过期性信号锁(PermitExpirableSemaphore)等

  • 提供先进的分布式服务,如分布式远程服务(Remote Service),分布式实时对象(Live Object)服务,分布式执行服务(Executor Service),分布式调度任务服务(Schedule Service)和分布式映射归纳服务(MapReduce)

Redisson的使用

如何安装 Redisson

安装 Redisson 最便捷的方法是使用 Maven 或者 Gradle:

•Maven

<dependency>	
    <groupId>org.redisson</groupId>	
    <artifactId>redisson</artifactId>	
    <version>3.11.4</version>	
</dependency>

•Gradle

compile group: 'org.redisson', name: 'redisson', version: '3.11.4'

目前 Redisson 最新版是 3.11.4,当然你也可以通过搜索 Maven 中央仓库 mvnrepository[1] 来找到 Redisson 的各种版本。

获取RedissonClient对象

RedissonClient有多种模式,主要的模式有:

  • 单节点模式

  • 哨兵模式

  • 主从模式

  • 集群模式

首先介绍单节点模式。

单节点模式的程序化配置方法,大致如下:

Config config = new Config();
config.useSingleServer().setAddress("redis://myredisserver:6379");
RedissonClient redisson = Redisson.create(config);
Config config = new Config();
config.useSingleServer().setAddress("redis://myredisserver:6379");
RedissonClient redisson = Redisson.create(config);// connects to 127.0.0.1:6379 by defaultRedisson
Client redisson = Redisson.create();
SingleServerConfig singleConfig = config.useSingleServer();

SpringBoot整合Redisson

Redisson有多种模式,首先介绍单机模式的整合。

一、导入Maven依赖

<!-- redisson-springboot -->
   <dependency>
       <groupId>org.redisson</groupId>
       <artifactId>redisson-spring-boot-starter</artifactId>
       <version>3.11.4</version>
   </dependency>

二、核心配置文件

spring:
  redis:
    host: 127.0.0.1
    port: 6379
    database: 0
    timeout: 5000

三、添加配置类

RedissonConfig.java

import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.autoconfigure.data.redis.RedisProperties;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;


@Configuration
public class RedissonConfig {

    @Autowired
    private RedisProperties redisProperties;

    @Bean
    public RedissonClient redissonClient() {
        Config config = new Config();
        String redisUrl = String.format("redis://%s:%s", redisProperties.getHost() + "", redisProperties.getPort() + "");
        config.useSingleServer().setAddress(redisUrl).setPassword(redisProperties.getPassword());
        config.useSingleServer().setDatabase(3);
        return Redisson.create(config);
    }

}

自定义starter

由于redission可以有多种模式,处于学习的目的,将多种模式封装成一个start,可以学习一下starter的制作。

在这里插入图片描述

封装一个RedissonManager,通过策略模式,根据不同的配置类型,创建 RedissionConfig实例,然后创建RedissionClient对象。

在这里插入图片描述

使用 RLock 实现 Redis 分布式锁

RLock 是 Java 中可重入锁的分布式实现,下面的代码演示了 RLock 的用法:

public class RedissionTest {

    @Resource
    RedissonManager redissonManager;

 @Test
    public void testLockExamples() {
        // 默认连接上 127.0.0.1:6379
        RedissonClient redisson = redissonManager.getRedisson();
        // RLock 继承了 java.util.concurrent.locks.Lock 接口
        RLock lock = redisson.getLock("redission:test:lock:1");

        final int[] count = {0};
        int threads = 10;
        ExecutorService pool = Executors.newFixedThreadPool(10);
        CountDownLatch countDownLatch = new CountDownLatch(threads);
        long start = System.currentTimeMillis();
        for (int i = 0; i < threads; i++) {
            pool.submit(() ->
            {
                for (int j = 0; j < 1000; j++) {
                    lock.lock();

                    count[0]++;
                    lock.unlock();
                }
                countDownLatch.countDown();
            });
        }

        try {
            countDownLatch.await();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        System.out.println("10个线程每个累加1000为: = " + count[0]);
        //输出统计结果
        float time = System.currentTimeMillis() - start;

        System.out.println("运行的时长为:" + time);
        System.out.println("每一次执行的时长为:" + time/count[0]);
    }

}

此代码将产生以下输出:

10个线程每个累加1000为: = 10000
运行的时长为:14172.0
每一次执行的时长为:1.4172

Redision锁 核心源码分析

单机模式下,简单Redision锁的使用如下:

// 构造redisson实现分布式锁必要的Config
Config config = new Config();
config.useSingleServer().setAddress("redis://172.29.1.180:5379").setPassword("a123456").setDatabase(0);
// 构造RedissonClient
RedissonClient redissonClient = Redisson.create(config);
// 设置锁定资源名称
RLock disLock = redissonClient.getLock("DISLOCK");
//尝试获取分布式锁
boolean isLock= disLock.tryLock(500, 15000, TimeUnit.MILLISECONDS);
if (isLock) {
   try {
        //TODO if get lock success, do something;
        Thread.sleep(15000);

   } catch (Exception e) {
   } finally {
    // 无论如何, 最后都要解锁
    disLock.unlock();
   }
}

通过代码可知,经过Redisson的封装,实现Redis分布式锁非常方便,和显式锁的使用方法是一样的。RLock接口继承了 Lock接口。

我们再看一下Redis中的value是啥,和前文分析一样,hash结构, redis 的key就是资源名称。

hash结构的key就是UUID+threadId,hash结构的value就是重入值,在分布式锁时,这个值为1(Redisson还可以实现重入锁,那么这个值就取决于重入次数了):

172.29.1.180:5379> hgetall DISLOCK
1) "01a6d806-d282-4715-9bec-f51b9aa98110:1"
2) "1"

使用客户端工具看到的效果如下:

在这里插入图片描述

getLock()方法

//name:锁的名称
public RLock getLock(String name) {
//默认创建的同步执行器, (存在异步执行器, 因为锁的获取和释放是有强一致性要求, 默认同步)
    return new RedissonLock(this.connectionManager.getCommandExecutor(), name);
}

可以看到,调用getLock()方法后实际返回一个RedissonLock对象

点击 RedissonLock 进去,发现这是一个 RedissonLock 构造方法,主要初始化一些属性。

public RedissonLock(CommandAsyncExecutor commandExecutor, String name) {
    super(commandExecutor, name);
    this.commandExecutor = commandExecutor;
    
    //唯一ID
    this.id = commandExecutor.getConnectionManager().getId();
    //等待获取锁时间
    this.internalLockLeaseTime = commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout();
    //ID + 锁名称
    this.entryName = this.id + ":" + name;
    //发布订阅	
    this.pubSub = commandExecutor.getConnectionManager().getSubscribeService().getLockPubSub();
}

点击 getLockWatchdogTimeout() 进去看一下:

`public` `class` `Config {``    ` `    ``private` `long` `lockWatchdogTimeout = ``30` `* ``1000``;``        ` `    ``public` `long` `getLockWatchdogTimeout() {``        ``return` `lockWatchdogTimeout;``    ``}``    ` `    ``//省略``}`

internalLockLeaseTime 分布式锁的超时时间,默认是 30 秒,

现在我们知道默认是 30 秒,那么这个看门狗多久时间来延长一次有效期呢?

我们接着往下看。

tryLock方法

下面来看下tryLock方法,源码如下:

    @Override
    public boolean tryLock(long waitTime, long leaseTime, TimeUnit unit) throws InterruptedException {
        long time = unit.toMillis(waitTime);
        long current = System.currentTimeMillis();
        long threadId = Thread.currentThread().getId();
        Long ttl = tryAcquire(leaseTime, unit, threadId);
        // lock acquired
        if (ttl == null) {
            return true;
        }
        
        time -= System.currentTimeMillis() - current;
        if (time <= 0) {
            acquireFailed(threadId);
            return false;
        }
        
        current = System.currentTimeMillis();
        RFuture<RedissonLockEntry> subscribeFuture = subscribe(threadId);
        if (!subscribeFuture.await(time, TimeUnit.MILLISECONDS)) {
            if (!subscribeFuture.cancel(false)) {
                subscribeFuture.onComplete((res, e) -> {
                    if (e == null) {
                        unsubscribe(subscribeFuture, threadId);
                    }
                });
            }
            acquireFailed(threadId);
            return false;
        }

        try {
            time -= System.currentTimeMillis() - current;
            if (time <= 0) {
                acquireFailed(threadId);
                return false;
            }
        
            while (true) {
                long currentTime = System.currentTimeMillis();
                ttl = tryAcquire(leaseTime, unit, threadId);
                // lock acquired
                if (ttl == null) {
                    return true;
                }

                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }

                // waiting for message
                currentTime = System.currentTimeMillis();
                if (ttl >= 0 && ttl < time) {
                    getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
                } else {
                    getEntry(threadId).getLatch().tryAcquire(time, TimeUnit.MILLISECONDS);
                }

                time -= System.currentTimeMillis() - currentTime;
                if (time <= 0) {
                    acquireFailed(threadId);
                    return false;
                }
            }
        } finally {
            unsubscribe(subscribeFuture, threadId);
        }
//        return get(tryLockAsync(waitTime, leaseTime, unit));
    }

以上代码使用了异步回调模式,RFuture 继承了 java.util.concurrent.Future, CompletionStage两大接口,异步回调模式的基础知识,请参见 《Java高并发核心编程 卷2 》

tryLock方法 调用了tryAcquire()方法,核心逻辑在tryAcquire()方法

tryAcquire()方法

在RedissonLock对象的lock()方法主要调用tryAcquire()方法

img

tryLockInnerAsync

private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, long threadId) {
 
    if (leaseTime != -1L) {
    //进行异步获取锁
        return this.tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
    } else {
     //尝试异步获取锁, 获取锁成功返回空, 否则返回锁剩余过期时间
        RFuture<Long> ttlRemainingFuture = this.tryLockInnerAsync(this.commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
         
     //ttlRemainingFuture 执行完成后触发此操作
        ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
            if (e == null) {
            //ttlRemaining == null 代表获取了锁
            //获取到锁后执行续时操作
                if (ttlRemaining == null) {
                    this.scheduleExpirationRenewal(threadId);
                }
 
            }
        });
        return ttlRemainingFuture;
    }
}

由于leaseTime == -1,于是走tryLockInnerAsync()方法,这个方法才是关键

img

首先,看一下evalWriteAsync方法的定义

<T, R> RFuture<R> evalWriteAsync(String key, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object ... params);

这和前面的jedis调用lua脚本类似,最后两个参数分别是keys和params。

单独将调用的那一段摘出来看,实际调用是这样的:

commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
                  "if (redis.call('exists', KEYS[1]) == 0) then " +
                      "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                      "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                      "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                      "return nil; " +
                  "end; " +
                  "return redis.call('pttl', KEYS[1]);",
                    Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId));

结合上面的参数声明,我们可以知道,这里KEYS[1]就是getName(),ARGV[2]是getLockName(threadId)

假设:

  • 前面获取锁时传的name是“DISLOCK”,
  • 假设调用的线程ID是1,
  • 假设成员变量UUID类型的id是01a6d806-d282-4715-9bec-f51b9aa98110

那么KEYS[1]=DISLOCK,ARGV[2]=01a6d806-d282-4715-9bec-f51b9aa98110:1

因此,这段脚本的意思是

  1、判断有没有一个叫“DISLOCK”的key

  2、如果没有,则在其下设置一个字段为“01a6d806-d282-4715-9bec-f51b9aa98110:1”,值为“1”的键值对 ,并设置它的过期时间

  3、如果存在,则进一步判断“01a6d806-d282-4715-9bec-f51b9aa98110:1”是否存在,若存在,则其值加1,并重新设置过期时间

  4、返回“DISLOCK”的生存时间(毫秒)

原理:加锁机制

这里用的数据结构是hash,hash的结构是: key 字段1 值1 字段2 值2 。。。

用在锁这个场景下,key就表示锁的名称,也可以理解为临界资源,字段就表示当前获得锁的线程

所有竞争这把锁的线程都要判断在这个key下有没有自己线程的字段,如果没有则不能获得锁,如果有,则相当于重入,字段值加1(次数)

在这里插入图片描述

Lua脚本的详解

为何要使用lua语言?

因为一大堆复杂的业务逻辑,可以通过封装在lua脚本中发送给redis,保证这段复杂业务逻辑执行的原子性

在这里插入图片描述

回顾一下evalWriteAsync方法的定义

<T, R> RFuture<R> evalWriteAsync(String key, Codec codec, RedisCommand<T> evalCommandType, String script, List<Object> keys, Object ... params);

注意,其最后两个参数分别是keys和params。

关于 lua脚本的参数解释:

KEYS[1] 代表的是你加锁的那个key,比如说:

RLock lock = redisson.getLock("DISLOCK");

这里你自己设置了加锁的那个锁key就是“DISLOCK”。

ARGV[1] 代表的就是锁key的默认生存时间

调用的时候,传递的参数为 internalLockLeaseTime ,该值默认30秒。

ARGV[2] 代表的是加锁的客户端的ID,类似于下面这样:

01a6d806-d282-4715-9bec-f51b9aa98110:1

lua脚本的第一段if判断语句,就是用“exists DISLOCK”命令判断一下,如果你要加锁的那个锁key不存在的话,你就进行加锁。

如何加锁呢?很简单,用下面的redis命令:

hset DISLOCK 01a6d806-d282-4715-9bec-f51b9aa98110:1 1

通过这个命令设置一个hash数据结构,这行命令执行后,会出现一个类似下面的数据结构:

DISLOCK:
    {
        8743c9c0-0795-4907-87fd-6c719a6b4586:1 1
    }

接着会执行“pexpire DISLOCK 30000”命令,设置DISLOCK这个锁key的生存时间是30秒(默认)

锁互斥机制

那么在这个时候,如果客户端2来尝试加锁,执行了同样的一段lua脚本,会咋样呢?

很简单,第一个if判断会执行“exists DISLOCK”,发现DISLOCK 这个锁key已经存在了。

接着第二个if判断,判断一下,DISLOCK锁key的hash数据结构中,是否包含客户端2的ID,但是明显不是的,因为那里包含的是客户端1的ID。

所以,客户端2会获取到pttl DISLOCK返回的一个数字,这个数字代表了DISLOCK 这个锁key的剩余生存时间。 比如还剩15000毫秒的生存时间。

此时客户端2会进入一个while循环,不停的尝试加锁。

可重入加锁机制

如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

RLock lock = redisson.getLock("DISLOCK")
lock.lock();
//业务代码
lock.lock();
//业务代码
lock.unlock();
lock.unlock();

分析上面那段lua脚本。

第一个if判断肯定不成立,“exists DISLOCK”会显示锁key已经存在了。

第二个if判断会成立,因为DISLOCK的hash数据结构中包含的那个ID,就是客户端1的那个ID,也就是“8743c9c0-0795-4907-87fd-6c719a6b4586:1”

此时就会执行可重入加锁的逻辑,他会用:

incrby DISLOCK

8743c9c0-0795-4907-87fd-6c719a6b4586:1 1

通过这个命令,对客户端1的加锁次数,累加1。

此时DISLOCK数据结构变为下面这样:

DISLOCK:
    {
        8743c9c0-0795-4907-87fd-6c719a6b4586:1 2
    }

释放锁机制

如果执行lock.unlock(),就可以释放分布式锁,此时的业务逻辑也是非常简单的。

其实说白了,就是每次都对DISLOCK数据结构中的那个加锁次数减1。

如果发现加锁次数是0了,说明这个客户端已经不再持有锁了,此时就会用:

“del DISLOCK”命令,从redis里删除这个key。

然后呢,另外的客户端2就可以尝试完成加锁了。

unlock 源码

  @Override
    public void unlock() {
        try {
            get(unlockAsync(Thread.currentThread().getId()));
        } catch (RedisException e) {
            if (e.getCause() instanceof IllegalMonitorStateException) {
                throw (IllegalMonitorStateException) e.getCause();
            } else {
                throw e;
            }
        }
        
//        Future<Void> future = unlockAsync();
//        future.awaitUninterruptibly();
//        if (future.isSuccess()) {
//            return;
//        }
//        if (future.cause() instanceof IllegalMonitorStateException) {
//            throw (IllegalMonitorStateException)future.cause();
//        }
//        throw commandExecutor.convertException(future);
    }

再深入一下,实际调用的是unlockInnerAsync方法

unlockInnerAsync方法

在这里插入图片描述

原理:Redision 解锁机制

上图没有截取完整,完整的源码如下:

    protected RFuture<Boolean> unlockInnerAsync(long threadId) {
        return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
                "if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
                    "return nil;" +
                "end; " +
                "local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
                "if (counter > 0) then " +
                    "redis.call('pexpire', KEYS[1], ARGV[2]); " +
                    "return 0; " +
                "else " +
                    "redis.call('del', KEYS[1]); " +
                    "redis.call('publish', KEYS[2], ARGV[1]); " +
                    "return 1; "+
                "end; " +
                "return nil;",
                Arrays.<Object>asList(getName(), getChannelName()), LockPubSub.UNLOCK_MESSAGE, internalLockLeaseTime, getLockName(threadId));

    }

我们还是假设name=DISLOCK,假设线程ID是1

同理,我们可以知道

KEYS[1]是getName(),即KEYS[1]=DISLOCK

KEYS[2]是getChannelName(),即KEYS[2]=redisson_lock__channel:{DISLOCK}

ARGV[1]是LockPubSub.unlockMessage,即ARGV[1]=0

ARGV[2]是生存时间

ARGV[3]是getLockName(threadId),即ARGV[3]=8743c9c0-0795-4907-87fd-6c719a6b4586:1

因此,上面脚本的意思是:

  1、判断是否存在一个叫“DISLOCK”的key

  2、如果不存在,返回nil

  3、如果存在,使用Redis Hincrby 命令用于为哈希表中的字段值加上指定增量值 -1 ,代表减去1

  4、若counter >,返回空,若字段存在,则字段值减1

  5、若减完以后,counter > 0 值仍大于0,则返回0

  6、减完后,若字段值小于或等于0,则用 publish 命令广播一条消息,广播内容是0,并返回1;

可以猜测,广播0表示资源可用,即通知那些等待获取锁的线程现在可以获得锁了

在这里插入图片描述

通过redis Channel 解锁订阅

以上是正常情况下获取到锁的情况,那么当无法立即获取到锁的时候怎么办呢?

再回到前面获取锁的位置

@Override
public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
    long threadId = Thread.currentThread().getId();
    Long ttl = tryAcquire(leaseTime, unit, threadId);
    // lock acquired
    if (ttl == null) {
        return;
    }

    //    订阅
    RFuture<RedissonLockEntry> future = subscribe(threadId);
    commandExecutor.syncSubscription(future);

    try {
        while (true) {
            ttl = tryAcquire(leaseTime, unit, threadId);
            // lock acquired
            if (ttl == null) {
                break;
            }

            // waiting for message
            if (ttl >= 0) {
                getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
            } else {
                getEntry(threadId).getLatch().acquire();
            }
        }
    } finally {
        unsubscribe(future, threadId);
    }
//        get(lockAsync(leaseTime, unit));
}


protected static final LockPubSub PUBSUB = new LockPubSub();

protected RFuture<RedissonLockEntry> subscribe(long threadId) {
    return PUBSUB.subscribe(getEntryName(), getChannelName(), commandExecutor.getConnectionManager().getSubscribeService());
}

protected void unsubscribe(RFuture<RedissonLockEntry> future, long threadId) {
    PUBSUB.unsubscribe(future.getNow(), getEntryName(), getChannelName(), commandExecutor.getConnectionManager().getSubscribeService());
}

这里会订阅Channel,当资源可用时可以及时知道,并抢占,防止无效的轮询而浪费资源

这里的channel为:

redisson_lock__channel:

在这里插入图片描述

在这里插入图片描述

当资源可用用的时候,循环去尝试获取锁,由于多个线程同时去竞争资源,所以这里用了信号量,对于同一个资源只允许一个线程获得锁,其它的线程阻塞

这点,有点儿类似 Zookeeper分布式锁:

有关zookeeper分布式锁的原理和实现,具体请参见下面的博客:
Zookeeper 分布式锁 (图解+秒懂+史上最全)

watch dog自动延期机制

客户端1加锁的锁key默认生存时间才30秒,如果超过了30秒,客户端1还想一直持有这把锁,怎么办呢?

简单!只要客户端1一旦加锁成功,就会启动一个watch dog看门狗,他是一个后台线程,会每隔10秒检查一下,如果客户端1还持有锁key,那么就会不断的延长锁key的生存时间。

使用watchDog机制实现锁的续期

但是聪明的同学肯定会问:

有效时间设置多长,假如我的业务操作比有效时间长,我的业务代码还没执行完,就自动给我解锁了,不就完蛋了吗。

这个问题就有点棘手了,在网上也有很多讨论:

第一种解决方法就是靠程序员自己去把握,预估一下业务代码需要执行的时间,然后设置有效期时间比执行时间长一些,保证不会因为自动解锁影响到客户端业务代码的执行。

但是这并不是万全之策,比如网络抖动这种情况是无法预测的,也有可能导致业务代码执行的时间变长,所以并不安全。

第二种方法,使用监事狗watchDog机制实现锁的续期。

第二种方法比较靠谱一点,而且无业务入侵。

在Redisson框架实现分布式锁的思路,就使用watchDog机制实现锁的续期。

当加锁成功后,同时开启守护线程,默认有效期是30秒,每隔10秒就会给锁续期到30秒,只要持有锁的客户端没有宕机,就能保证一直持有锁,直到业务代码执行完毕由客户端自己解锁,如果宕机了自然就在有效期失效后自动解锁。

这里,和前面解决 JVM STW的锁过期问题有点类似,只不过,watchDog自动续期,也没有完全解决JVM STW的锁过期问题。

如何彻底解决 JVM STW的锁过期问题,可以来疯狂创客圈的社群讨论。

redisson watchdog 使用和原理

实际上,redisson加锁的基本流程图如下:

在这里插入图片描述

这里专注于介绍watchdog。

首先watchdog的具体思路是 加锁时,默认加锁 30秒,每10秒钟检查一次,如果存在就重新设置 过期时间为30秒。

然后设置默认加锁时间的参数是 lockWatchdogTimeout(监控锁的看门狗超时,单位:毫秒)

官方文档描述如下

lockWatchdogTimeout(监控锁的看门狗超时,单位:毫秒)

默认值:30000

监控锁的看门狗超时时间单位为毫秒。该参数只适用于分布式锁的加锁请求中未明确使用leaseTimeout参数的情况。如果该看门狗未使用lockWatchdogTimeout去重新调整一个分布式锁的lockWatchdogTimeout超时,那么这个锁将变为失效状态。这个参数可以用来避免由Redisson客户端节点宕机或其他原因造成死锁的情况。

需要注意的是

1.watchDog 只有在未显示指定加锁时间时才会生效。(这点很重要)

2.lockWatchdogTimeout设定的时间不要太小 ,比如我之前设置的是 100毫秒,由于网络直接导致加锁完后,watchdog去延期时,这个key在redis中已经被删除了。

tryAcquireAsync原理

在调用lock方法时,会最终调用到tryAcquireAsync。详细解释如下:

private <T> RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {
    //如果指定了加锁时间,会直接去加锁
        if (leaseTime != -1) {
            return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
        }
    //没有指定加锁时间 会先进行加锁,并且默认时间就是 LockWatchdogTimeout的时间
    //这个是异步操作 返回RFuture 类似netty中的future
        RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
                                                commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
                                                TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
       //这里也是类似netty Future 的addListener,在future内容执行完成后执行
        ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
            if (e != null) {
                return;
            }

            // lock acquired
            if (ttlRemaining == null) {
            //这里是定时执行 当前锁自动延期的动作
                scheduleExpirationRenewal(threadId);
            }
        });
        return ttlRemainingFuture;
    }

scheduleExpirationRenewal 中会调用renewExpiration。

scheduleExpirationRenewal() 跳进去看:

private void scheduleExpirationRenewal(long threadId) {
    RedissonLock.ExpirationEntry entry = new RedissonLock.ExpirationEntry();
    RedissonLock.ExpirationEntry oldEntry = (RedissonLock.ExpirationEntry)EXPIRATION_RENEWAL_MAP.putIfAbsent(this.getEntryName(), entry);
    if (oldEntry != null) {
        oldEntry.addThreadId(threadId);
    } else {
        entry.addThreadId(threadId);
        this.renewExpiration();
    }
 
}

接着进去 renewExpiration() 方法看:

renewExpiration执行延期动作

这里我们可以看到是 启用了一个timeout定时,去执行延期动作

 private void renewExpiration() {
 //从容器中去获取要被续期的锁
    RedissonLock.ExpirationEntry ee = (RedissonLock.ExpirationEntry)EXPIRATION_RENEWAL_MAP.get(this.getEntryName());
     //容器中没有要续期的锁,直接返回null
    if (ee != null) {
    //创建定时任务
    //并且执行的时间为 30000/3 毫秒,也就是 10 秒后
        Timeout task = this.commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
            public void run(Timeout timeout) throws Exception {
            //从容器中取出线程
                RedissonLock.ExpirationEntry ent = (RedissonLock.ExpirationEntry)RedissonLock.EXPIRATION_RENEWAL_MAP.get(RedissonLock.this.getEntryName());
                if (ent != null) {
                
                    Long threadId = ent.getFirstThreadId();
                    if (threadId != null) {
                    //Redis进行锁续期
                //这个方法的作用其实底层也是去执行LUA脚本
                        RFuture<Boolean> future = RedissonLock.this.renewExpirationAsync(threadId);
                        //同理去处理Redis续命结果
                        future.onComplete((res, e) -> {
                            if (e != null) {
                                RedissonLock.log.error("Can't update lock " + RedissonLock.this.getName() + " expiration", e);
                            } else {
                             //如果成功续期,递归继续创建下一个 10S 后的任务
                                if (res) {
                                //递归继续创建下一个10S后的任务
                                    RedissonLock.this.renewExpiration();
                                }
 
                            }
                        });
                    }
                }
            }
        }, this.internalLockLeaseTime / 3L, TimeUnit.MILLISECONDS);
        ee.setTimeout(task);
    }
}

从这里我们就知道,获取锁成功就会开启一个定时任务,也就是 watchdog 看门狗,定时任务会定期检查去续期renewExpirationAsync(threadId)。

从这里我们明白,该定时调度每次调用的时间差是 internalLockLeaseTime / 3,也就是 10 秒。

最终 scheduleExpirationRenewal会调用到 renewExpirationAsync,

renewExpirationAsync

执行下面这段 lua脚本。他主要判断就是 这个锁是否在redis中存在,如果存在就进行 pexpire 延期。

   protected RFuture<Boolean> renewExpirationAsync(long threadId) {
        return evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
                "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                        "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                        "return 1; " +
                        "end; " +
                        "return 0;",
                Collections.singletonList(getName()),
                internalLockLeaseTime, getLockName(threadId));
    }

watchLog总结

1.要使 watchLog机制生效 ,lock时 不要设置 过期时间

2.watchlog的延时时间 可以由 lockWatchdogTimeout指定默认延时时间,但是不要设置太小。如100

3.watchdog 会每 lockWatchdogTimeout/3时间,去延时。

4.watchdog 通过 类似netty的 Future功能来实现异步延时

5.watchdog 最终还是通过 lua脚本来进行延时

总结:Redis分布式锁过期怎么办?

尼恩先简单的总结一下,两大核心方案,大家收藏起来,毒打面试官。

在这里插入图片描述

第一种方案是入侵性比较强,在代码里边需要进行版本的检查。

第一种方案是入侵性比较弱,建议使用第二种。

如果使用第二种方案,就是设计一个watch dog 看门狗后台线程, 最好是能够定时调度的线程。

只要客户端一旦加锁成功,watch dog 看门狗后台线程添加一个定时任务,会每隔 10 秒检查一下,如果客户端还持有锁 key,那么就会不断的延长锁 key 的过期时间。

并且再一次创建一个续期的定时任务,为下一次续期做准备。

默认情况下,加锁的时间是 30 秒,.如果加锁的业务没有执行完,就会进行一次续期,把锁重置成 30 秒,万一业务的机器宕机了,那就续期不了,30 秒之后锁就解开了。

说在最后:有问题找老架构取经‍

通过对Redis 锁过期的深度回答,可以充分展示一下大家雄厚的 “技术肌肉”,让面试官爱到 “不能自已、口水直流”,然后实现”offer直提”。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典PDF》,里边有大量的大厂真题、面试难题、架构难题。

很多小伙伴刷完后, 吊打面试官, 大厂横着走。

在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

另外,如果没有面试机会,可以找尼恩来改简历、做帮扶。

遇到职业难题,找老架构取经, 可以省去太多的折腾,省去太多的弯路。

尼恩指导了大量的小伙伴上岸,前段时间,刚指导一个40岁+被裁小伙伴,拿到了一个年薪100W的offer。

狠狠卷,实现 “offer自由” 很容易的, 前段时间一个武汉的跟着尼恩卷了2年的小伙伴, 在极度严寒/痛苦被裁的环境下, offer拿到手软, 实现真正的 “offer自由” 。

技术自由的实现路径:

实现你的 架构自由:

吃透8图1模板,人人可以做架构

10Wqps评论中台,如何架构?B站是这么做的!!!

阿里二面:千万级、亿级数据,如何性能优化? 教科书级 答案来了

峰值21WQps、亿级DAU,小游戏《羊了个羊》是怎么架构的?

100亿级订单怎么调度,来一个大厂的极品方案

2个大厂 100亿级 超大流量 红包 架构方案

… 更多架构文章,正在添加中

实现你的 响应式 自由:

响应式圣经:10W字,实现Spring响应式编程自由

这是老版本 《Flux、Mono、Reactor 实战(史上最全)

实现你的 spring cloud 自由:

Spring cloud Alibaba 学习圣经》 PDF

分库分表 Sharding-JDBC 底层原理、核心实战(史上最全)

一文搞定:SpringBoot、SLF4j、Log4j、Logback、Netty之间混乱关系(史上最全)

实现你的 linux 自由:

Linux命令大全:2W多字,一次实现Linux自由

实现你的 网络 自由:

TCP协议详解 (史上最全)

网络三张表:ARP表, MAC表, 路由表,实现你的网络自由!!

实现你的 分布式锁 自由:

Redis分布式锁(图解 - 秒懂 - 史上最全)

Zookeeper 分布式锁 - 图解 - 秒懂

实现你的 王者组件 自由:

队列之王: Disruptor 原理、架构、源码 一文穿透

缓存之王:Caffeine 源码、架构、原理(史上最全,10W字 超级长文)

缓存之王:Caffeine 的使用(史上最全)

Java Agent 探针、字节码增强 ByteBuddy(史上最全)

实现你的 面试题 自由:

4800页《尼恩Java面试宝典 》 40个专题

免费获取11个技术圣经PDF:

标签:加锁,lock,美团,Redis,key,import,超时,分布式
From: https://www.cnblogs.com/crazymakercircle/p/18411831

相关文章

  • 解决rabbitmq队列超时timeout问题【win环境】
    解决rabbitmq队列超时timeout问题【win环境】1.安装RabbitMQ-PluginscdC:\ProgramFiles\RabbitMQServer\rabbitmq_server-3.11.3\sbinrabbitmq-pluginsenablerabbitmq_management浏览器打开http://localhost:15672来访问web端的管理界面,用户名:guest,密码:guest进入管理......
  • 内存耗尽后,Redis会发生什么?
    前言 作为一台服务器来说,内存并不是无限的,所以总会存在内存耗尽的情况,那么当Redis服务器的内存耗尽后,如果继续执行请求命令,Redis会如何处理呢?  2内存回收 使用Redis服务时,很多情况下某些键值对只会在特定的时间内有效,为了防止这种类型的数据一直占有内存,我们可以......
  • 网络编程(setsockopt、超时检测)
    【1】setsockopt:设置套接字属性set:设置sock:套接字option:属性intsetsockopt(intsockfd,intlevel,intoptname,void*optval,socklen_toptlen)功能:获得/设置套接字属性参数:sockfd:套接字描述符level:协议层optname:选项名optval:选项值optlen:选项值大小返回值:......
  • DataGrip或者intellijIDEA 远程链接数据库的时候下载驱动失败 出现错误:https://downlo
    一、问题本人使用DataGrip版本:2023.1在链接数据库的时候出现这个错误,无法完全加载驱动,是因为这里的maven仓库下载驱动失败,这时候需要自己手动下载驱动二、怎么解决需要手动更改下载的镜像网址,改成阿里云的镜像网址仓库服务(aliyun.com)这三个仓库地址,可以选择其中一个......
  • Redis常见报错及解决方法总结
    Redis常见报错及解决方法总结Redis作为高效的内存数据库,在实际使用过程中不可避免会遇到一些问题和报错。为了帮助大家更好地应对这些问题,我将常见的Redis报错及其解决方法进行总结,并提供具体的操作步骤。1.ConnectionRefused错误描述:客户端连接Redis时,出现Connection......
  • tomcat线程池满了会影响redis请求吗
    Tomcat线程池满了会影响处理新来的HTTP请求,但通常不会直接影响Redis的请求,因为这两者在系统架构中是分离的组件。以下是相关的解释:Tomcat线程池Tomcat服务器使用线程池来处理并发到达的HTTP请求。每个请求都会消耗线程池中的一个线程。如果线程池达到其最大容量,新到达的请求可能会......
  • redis安装
    一、下载地址:http://download.redis.io/releases/找到自己想要的版本二、安装wgethttp://download.redis.io/releases/redis-5.0.9.tar.gztar-zxvfredis-5.0.9.tar.gzcdredis-5.0.9使用make进行编译的前提是要安装gcc=>yum-yinstallgccautomakeautoconflib......
  • Redis 的混合持久化
    aof-use-rdb-preamble选项设置为yes,并且要同时启用RDB和AOF两种持久化混合持久化的优缺点优点:更快的启动速度:混合持久化结合了RDB的速度优势,所以Redis可以更快地重新启动,不用等待很久。数据安全:利用AOF的方式,即使服务器突然断电,也只会丢失极短的时间内的数据。文件更......
  • 不使用Redis分布式锁,如何避免用户重复点击提交?
    前端,在用户点击后,对按钮做置灰操作。但有些情况,用户会绕过置灰,实现重复点击。后端,对客户端携带的token,验证是否使用过;验证逻辑,存储在数据库中,验证逻辑使用悲观锁或者乐观锁实现。前端按钮置灰前端按钮置灰:在用户点击按钮后,将按钮禁用一段时间或直到请求响应。优点:简......
  • 【项目实战】Redis使用场景之基于Redis实现分布式队列
    一、什么是分布式队列分布式队列,指在分布式系统中用于协调不同服务或组件之间的消息传递和任务调度的队列。分布式队列,允许多个生产者将任务放入队列,而多个消费者可以从队列中取出任务进行处理。分布式队列,在微服务架构、任务调度、消息传递等场景中非常有用。二、为什......