首页 > 数据库 >整合Apache Hudi+Mysql+FlinkCDC2.1+CDH6.3.0

整合Apache Hudi+Mysql+FlinkCDC2.1+CDH6.3.0

时间:2024-07-25 09:26:42浏览次数:21  
标签:username Hudi CDH6.3 flink id test v4 FlinkCDC2.1 order

一、环境准备

1.环境准备:

flink 1.13.1+hudi0.10+hive2.1.1+cdh6.3.0+mysql5.7+flinkcdc2.1+flink web平台

二.编译hudi(这个编译是以前的一个测试版本,编译大同小异)

1.使用git命令下载hudi0.10的代码

steven@wangyuxiangdeMacBook-Pro  ~  git clone  https://github.com/apache/hudi.git
Cloning into 'hudi'...
remote: Enumerating objects: 122696, done.
remote: Counting objects: 100% (5537/5537), done.
remote: Compressing objects: 100% (674/674), done.
remote: Total 122696 (delta 4071), reused 4988 (delta 3811), pack-reused 117159
Receiving objects: 100% (122696/122696), 75.85 MiB | 5.32 MiB/s, done.
Resolving deltas: 100% (61608/61608), done.

2.使用idea打开hudi更改packging--hudi-flink-bundle下的pom.xml,更改flink-bundel-shade-hive2下的hive-version更改为chd6.3.0的版本。

3.使用命令进行编译

mvn clean install -DskipTests -DskipITs -Dcheckstyle.skip=true -Drat.skip=true -Dhadoop.version=3.0.0  -Pflink-bundle-shade-hive2
1.因为chd6.3.0使用的是hadoop3.0.0,所以要指定hadoop的版本
2.使用的是hive2.1.1的版本,也要指定hive的版本,不然使用sync to hive的时候,会报类的冲突问题。

出现以上的证明编译成功。

4.在packaging下面各个组件中有编译好的jar包。

5.部署同步sync to hive的环境

将hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar包放入到以下路径

路径如下:

[flink@dbos-bigdata-test005 jars]$ pwd
/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/jars

进入到hive的lib路径,每一台hive节点都要放
[flink@dbos-bigdata-test005 lib]$ pwd
/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/lib/hive/lib
建立软链接
[flink@dbos-bigdata-test005 lib]$ ln -s ../../../jars/hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar  hudi-hadoop-mr-bundle-0.10.0-SNAPSHOT.jar

6.进入平台操作安装 YARN MapReduce 框架 JAR

7.hive的辅助jar

因为后面考虑到hudi的数据要存到oss上,所以要放这几个包进来(关于oss的配置详细可参考oss配置文档)

8.重启hive,使配置生效

三、flink环境:

1.配置flink on yarn模式

配置如下:flink-conf.yaml的配置文件如下

################################################################################
#  Licensed to the Apache Software Foundation (ASF) under one
#  or more contributor license agreements.  See the NOTICE file
#  distributed with this work for additional information
#  regarding copyright ownership.  The ASF licenses this file
#  to you under the Apache License, Version 2.0 (the
#  "License"); you may not use this file except in compliance
#  with the License.  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
#==============================================================================
## Execution
##==============================================================================
# execution.target: yarn-per-job
#execution.target: local
execution.checkpointing.externalized-checkpoint-retention: RETAIN_ON_CANCELLATION
#进行checkpointing的间隔时间(单位:毫秒)
execution.checkpointing.interval: 30000

execution.checkpointing.mode: EXACTLY_ONCE

#execution.checkpointing.prefer-checkpoint-for-recovery: true
classloader.check-leaked-classloader: false
#==============================================================================
# Common
#==============================================================================

# The external address of the host on which the JobManager runs and can be
# reached by the TaskManagers and any clients which want to connect. This setting
# is only used in Standalone mode and may be overwritten on the JobManager side
# by specifying the --host <hostname> parameter of the bin/jobmanager.sh executable.
# In high availability mode, if you use the bin/start-cluster.sh script and setup
# the conf/masters file, this will be taken care of automatically. Yarn/Mesos
# automatically configure the host name based on the hostname of the node where the
# JobManager runs.

jobmanager.rpc.address: dbos-bigdata-test005

# The RPC port where the JobManager is reachable.

jobmanager.rpc.port: 6123
akka.framesize: 10485760b

# The total process memory size for the JobManager.
#
# Note this accounts for all memory usage within the JobManager process, including JVM metaspace and other overhead.

jobmanager.memory.process.size: 1024m

# The total process memory size for the TaskManager.
#
# Note this accounts for all memory usage within the TaskManager process, including JVM metaspace and other overhead.

#taskmanager.memory.process.size: 1728m
taskmanager.heap.size: 1024m
# To exclude JVM metaspace and overhead, please, use total Flink memory size instead of 'taskmanager.memory.process.size'.
# It is not recommended to set both 'taskmanager.memory.process.size' and Flink memory.
#
# taskmanager.memory.flink.size: 1280m

# The number of task slots that each TaskManager offers. Each slot runs one parallel pipeline.

taskmanager.numberOfTaskSlots: 1

# The parallelism used for programs that did not specify and other parallelism.

parallelism.default: 1

# The default file system scheme and authority.
# 
# By default file paths without scheme are interpreted relative to the local
# root file system 'file:///'. Use this to override the default and interpret
# relative paths relative to a different file system,
# for example 'hdfs://mynamenode:12345'
#
# fs.default-scheme
env.java.home key: /usr/java/jdk1.8.0_181-cloudera 
#==============================================================================
# High Availability
#==============================================================================

# The high-availability mode. Possible options are 'NONE' or 'zookeeper'.
#
high-availability: zookeeper

# The path where metadata for master recovery is persisted. While ZooKeeper stores
# the small ground truth for checkpoint and leader election, this location stores
# the larger objects, like persisted dataflow graphs.
# 
# Must be a durable file system that is accessible from all nodes
# (like HDFS, S3, Ceph, nfs, ...) 

high-availability.storageDir: hdfs:///flink/ha/

# The list of ZooKeeper quorum peers that coordinate the high-availability
# setup. This must be a list of the form:
# "host1:clientPort,host2:clientPort,..." (default clientPort: 2181)
#
# high-availability.zookeeper.quorum: localhost:2181
high-availability.zookeeper.quorum: dbos-bigdata-test003:2181,dbos-bigdata-test004:2181,dbos-bigdata-test005:2181

# ACL options are based on https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgrammers.html#sc_BuiltinACLSchemes
# It can be either "creator" (ZOO_CREATE_ALL_ACL) or "open" (ZOO_OPEN_ACL_UNSAFE)
# The default value is "open" and it can be changed to "creator" if ZK security is enabled
#
# high-availability.zookeeper.client.acl: open

#==============================================================================
# Fault tolerance and checkpointing
#==============================================================================

# The backend that will be used to store operator state checkpoints if
# checkpointing is enabled.
#
# Supported backends are 'jobmanager', 'filesystem', 'rocksdb', or the
# <class-name-of-factory>.
#
state.backend: filesystem

# Directory for checkpoints filesystem, when using any of the default bundled
# state backends.
#
state.checkpoints.dir: hdfs://bigdata/flink-checkpoints
#state.checkpoints.dir: hdfs:///flink/checkpoints
#state.savepoints.dir: hdfs:///flink/savepoints
# Default target directory for savepoints, optional.
#
# state.savepoints.dir: hdfs://namenode-host:port/flink-savepoints

# Flag to enable/disable incremental checkpoints for backends that
# support incremental checkpoints (like the RocksDB state backend). 
#
# state.backend.incremental: false

# The failover strategy, i.e., how the job computation recovers from task failures.
# Only restart tasks that may have been affected by the task failure, which typically includes
# downstream tasks and potentially upstream tasks if their produced data is no longer available for consumption.

jobmanager.execution.failover-strategy: region

#==============================================================================
# Rest & web frontend
#==============================================================================

# The port to which the REST client connects to. If rest.bind-port has
# not been specified, then the server will bind to this port as well.
#
#rest.port: 8081

# The address to which the REST client will connect to
#
#rest.address: 0.0.0.0

# Port range for the REST and web server to bind to.
#
# rest.bind-port: 65535-80900

# The address that the REST & web server binds to
#
#rest.bind-address: 0.0.0.0

# Flag to specify whether job submission is enabled from the web-based
# runtime monitor. Uncomment to disable.

#web.submit.enable: false

#==============================================================================
# Advanced
#==============================================================================

# Override the directories for temporary files. If not specified, the
# system-specific Java temporary directory (java.io.tmpdir property) is taken.
#
# For framework setups on Yarn or Mesos, Flink will automatically pick up the
# containers' temp directories without any need for configuration.
#
# Add a delimited list for multiple directories, using the system directory
# delimiter (colon ':' on unix) or a comma, e.g.:
#     /data1/tmp:/data2/tmp:/data3/tmp
#
# Note: Each directory entry is read from and written to by a different I/O
# thread. You can include the same directory multiple times in order to create
# multiple I/O threads against that directory. This is for example relevant for
# high-throughput RAIDs.
#
# io.tmp.dirs: /tmp

# The classloading resolve order. Possible values are 'child-first' (Flink's default)
# and 'parent-first' (Java's default).
#
# Child first classloading allows users to use different dependency/library
# versions in their application than those in the classpath. Switching back
# to 'parent-first' may help with debugging dependency issues.
#
# classloader.resolve-order: child-first

# The amount of memory going to the network stack. These numbers usually need 
# no tuning. Adjusting them may be necessary in case of an "Insufficient number
# of network buffers" error. The default min is 64MB, the default max is 1GB.
# 
# taskmanager.memory.network.fraction: 0.1
# taskmanager.memory.network.min: 64mb
# taskmanager.memory.network.max: 1gb

#==============================================================================
# Flink Cluster Security Configuration
#==============================================================================

# Kerberos authentication for various components - Hadoop, ZooKeeper, and connectors -
# may be enabled in four steps:
# 1. configure the local krb5.conf file
# 2. provide Kerberos credentials (either a keytab or a ticket cache w/ kinit)
# 3. make the credentials available to various JAAS login contexts
# 4. configure the connector to use JAAS/SASL

# The below configure how Kerberos credentials are provided. A keytab will be used instead of
# a ticket cache if the keytab path and principal are set.

# security.kerberos.login.use-ticket-cache: true
# security.kerberos.login.keytab: /path/to/kerberos/keytab
# security.kerberos.login.principal: flink-user

# The configuration below defines which JAAS login contexts

# security.kerberos.login.contexts: Client,KafkaClient

#==============================================================================
# ZK Security Configuration
#==============================================================================

# Below configurations are applicable if ZK ensemble is configured for security

# Override below configuration to provide custom ZK service name if configured
# zookeeper.sasl.service-name: zookeeper

# The configuration below must match one of the values set in "security.kerberos.login.contexts"
# zookeeper.sasl.login-context-name: Client

#==============================================================================
# HistoryServer
#==============================================================================

# The HistoryServer is started and stopped via bin/historyserver.sh (start|stop)

# Directory to upload completed jobs to. Add this directory to the list of
# monitored directories of the HistoryServer as well (see below).
#jobmanager.archive.fs.dir: hdfs:///completed-jobs/

# The address under which the web-based HistoryServer listens.
#historyserver.web.address: 0.0.0.0

# The port under which the web-based HistoryServer listens.
#historyserver.web.port: 8082

# Comma separated list of directories to monitor for completed jobs.
#historyserver.archive.fs.dir: hdfs:///completed-jobs/

# Interval in milliseconds for refreshing the monitored directories.
#historyserver.archive.fs.refresh-interval: 10000
env.log.dir: /tmp/flink
high-availability.zookeeper.path.root: /flink

2.配置flink的环境变量

vim /etc/profile
以下是环境变量,根据自己的版本进行更改
#set default jdk1.8 env
export JAVA_HOME=/usr/java/jdk1.8.0_181-cloudera
export JRE_HOME=/usr/java/jdk1.8.0_181-cloudera/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export HADOOP_CONF_DIR=/etc/hadoop/conf
export HADOOP_CLASSPATH=`hadoop classpath`
export HBASE_CONF_DIR=/etc/hbase/conf
export FLINK_HOME=/opt/flink
export HIVE_HOME=/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/lib/hive
export HIVE_CONF_DIR=/etc/hive/conf
export M2_HOME=/usr/local/maven/apache-maven-3.5.4
export CANAL_ADMIN_HOME=/data/canal/admin
export CANAL_SERVER_HOME=/data/canal/deployer
export PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin:${FLINK_HOME}/bin:${M2_HOME}/bin:${HIVE_HOME}/bin:${CANAL_SERVER_HOME}/bin:${CANAL_ADMIN_HOME}/bin:$PATH

3.查看flink是否能正常使用

4.hudi编译好的jar包和flinkcdc的jar包放到flink的lib下

flinkcdc2.1的jar包下载地址

​https://github.com/ververica/flink-cdc-connectors/releases​​​​

5.以下三个包也要放到flink的lib下,否则同步数据到hive的时候会报错。

6.flink-sql的web的安装与部署

1.github上的下载地址
https://github.com/zhp8341/flink-streaming-platform-web
2.安装地址
https://github.com/zhp8341/flink-streaming-platform-web/blob/master/docs/deploy.md

7.编译

mvn clean package  -Dmaven.test.skip=true

8.部署

2、flink-streaming-platform-web安装(一定要和flink部署在同一台)
a:下载最新版本 并且解压 https://github.com/zhp8341/flink-streaming-platform-web/releases/
tar -xvf   flink-streaming-platform-web.tar.gz
b:执行mysql语句
mysql 版本5.6+以上
创建数据库 数据库名:flink_web
执行表语句
语句地址 https://github.com/zhp8341/flink-streaming-platform-web/blob/master/docs/sql/flink_web.sql
c:修改数据库连接配置
/flink-streaming-platform-web/conf/application.properties  
改成上面建好的mysql地址
关于数据库连接配置 需要看清楚你 useSSL=true 你的mysql是否支持 如果不支持可以直接 useSSL=false
d:启动web
cd  /XXXX/flink-streaming-platform-web/bin 
启动 : sh deploy.sh  start
停止 :  sh deploy.sh  stop
日志目录地址: /XXXX/flink-streaming-platform-web/logs/
一定 一定 一定 要到bin目录下再执行deploy.sh 否则无法启动
e:登录
http://${ip或者hostname}:9084/  如 : http://hadoop003:9084/admin/index
登录号:admin  password: 123456

最终的flink-web界面(支持流批一体和jar包)

四.flink cdc到hudi的demo测试

1.mysql的建表语句

CREATE TABLE test_order_v4 (
id int,
username varchar(20),
product varchar(20),
price double,
qty int,
create_time TIMESTAMP,
PRIMARY KEY (id)
);

2.插入的测试数据

Insert into test_order_v4 (id,username,product,price,qty,create_time) values(200,'王昱翔','芒果',12,25,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(201,'王昱翔','芒果',12,26,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(202,'王昱翔','芒果',12,27,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(203,'王昱翔','芒果',12,28,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(204,'王昱翔','芒果',12,29,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(205,'王昱翔','芒果',12,30,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(206,'王昱翔','芒果',12,31,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(207,'王昱翔','芒果',12,32,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(208,'王昱翔','芒果',12,33,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(209,'王昱翔','芒果',12,34,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(210,'王昱翔','芒果',12,35,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(211,'王昱翔','芒果',12,36,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(212,'王昱翔','芒果',12,37,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(213,'王昱翔','芒果',12,38,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(214,'王昱翔','芒果',12,39,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(215,'王昱翔','芒果',12,40,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(216,'王昱翔','芒果',12,41,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(217,'王昱翔','芒果',12,42,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(218,'王昱翔','芒果',12,43,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(219,'王昱翔','芒果',12,44,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(220,'王昱翔','芒果',12,45,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(221,'王昱翔','芒果',12,46,current_timestamp());
insert into test_order_v4 (id,username,product,price,qty,create_time) values(222,'王昱翔','芒果',12,47,current_timestamp());

3.flink-sql语句

1.创建flink cdc的表
CREATE TABLE test_order_v4 (
id INT,
username STRING,
product STRING,
price DOUBLE,
qty INT,
create_time TIMESTAMP(0),
PRIMARY KEY(id) NOT ENFORCED
) WITH (
'connector' = 'mysql-cdc',
'hostname' = '192.168.100.3',
'port' = '3306',
'username' = 'dmp',
'password' = 'wangyuxiang',
'server-time-zone' = 'Asia/Shanghai',
'debezium.snapshot.mode'='initial',
'database-name' = 'dmp',
'table-name' = 'test_order_v4'
);
2.创建hudi表
CREATE TABLE hudi_test_order_v4(
id INT,
username STRING,
product STRING,
price double,
qty INT,
create_time TIMESTAMP(0)
)
WITH (
'connector' = 'hudi'
, 'path' = 'hdfs://bigdata/hudi/hdm2_v4'
, 'hoodie.datasource.write.recordkey.field' = 'id'  -- 主键
, 'write.precombine.field' = 'create_time'             -- 相同的键值时,取此字段最大值,默认ts字段
, 'write.tasks' = '1'
, 'compaction.tasks' = '1'
, 'write.rate.limit' = '2000'                          -- 限制每秒多少条
, 'table.type' = 'MERGE_ON_READ'                       -- 默认COPY_ON_WRITE
, 'compaction.async.enabled' = 'true'                  -- 在线压缩
, 'compaction.trigger.strategy' = 'num_commits'        -- 按次数压缩
, 'compaction.delta_commits' = '5'                     -- 默认为5
, 'hive_sync.enable' = 'true'                          -- 启用hive同步
, 'hive_sync.mode' = 'hms'                             -- 启用hive hms同步,默认jdbc
, 'hive_sync.metastore.uris' = 'thrift://dbos-bigdata-test002:9083'    -- required, metastore的端口
, 'hive_sync.jdbc_url' = 'jdbc:hive2://dbos-bigdata-test002:10000'     -- required, hiveServer地址
, 'hive_sync.table' = 'hudi_test_order_v4'                            -- required, hive 新建的表名
, 'hive_sync.db' = 'hudi2'                              -- required, hive 新建的数据库名
, 'hive_sync.username' = 'hive'                        -- required, HMS 用户名
, 'hive_sync.password' = ''                            -- required, HMS Password
, 'hive_sync.skip_ro_suffix' = 'true'                  -- 去除ro后缀
);


insert into hudi_test_order_v4 select id,username,product,price,qty,create_time from test_order_v4;

4.提交并保存

5.选择开启配置后提交任务

6.任务提交成功

7.yarn上已有这个任务

  1. 开始insert into插入数据测试

8.flink运行的DAG图上显示已插入条96数据压缩了3次

9.到hdfs上查看生成的文件

10.查看hive上是否生成表(已生成RO和RT表)

11.查询hive表中的数据

select * from hudi_test_order_v4_rt;
 select * from hudi_test_order_v4;

说明:已自动生产hudi MOR模式的

hudi_test_order_v4(这是一个ro表,因为我在代码中去ro后缀了)

hudi_test_order_v4_rt

以下数据证明mysqlbinlog--hudi--hive的链路是成功的

五:mysql的update操作

1.先查询mysql中ID为200的数据和flink DAG目前的状态 

2.mysql做update

更新一条数据
UPDATE test_order_v4 set username = 'Steven'  WHERE id = 200;

SELECT * from test_order_v4 WHERE id = 200;

3.更新新一条语句后,提交数从96新增加到97,但是没有进行压缩。

4.查询RT表中有此数据更新的记录

select * from hudi_test_order_v4_rt;

5.查询RO表中数据没有更新。

select * from hudi_test_order_v4;

五:mysql做delete的操作

1.flink DAG的状态提交97次

2.查询一条id为200的数据

3.mysql中删除此数据

DELETE FROM test_order_v4 WHERE id = 200;

4.flink的DAG状态是提交了98次

6.查询hive的rt表

select * from hudi_test_order_v4_rt where id = 200;
hive中id=200的数据已经被删掉

7.查询hive的ro表

select * from hudi_test_order_v4 where id = 200;
数据还是存在的,因为roge表没有达到触发压缩的条件,所以一直没有压缩更新

六:综合模拟频繁的更新、插入、删除测试,达到触发压缩的条件

insert into test_order_v4 (id,username,product,price,qty,create_time) values(224,'王昱翔','芒果',12,47,current_timestamp());
UPDATE test_order_v4 set username = 'Steven'  WHERE id = 201;
UPDATE test_order_v4 set username = '王新权'  WHERE id = 202;
UPDATE test_order_v4 set username = 'Steven'  WHERE id = 203;
DELETE FROM test_order_v4 WHERE id = 210;
DELETE FROM test_order_v4 WHERE id = 211;

1.已达到生成parquet

2.查询rt表

select * from hudi_test_order_v4_rt where username = '王昱翔';

3.查询ro表

select * from hudi_test_order_v4 where username = '王昱翔';

4.hudi同步到hive表中的数据做count测试

select count(1) from hudi_test_order_v4 where username = '王昱翔';

rt表比ro表多两条数据
总结:
Hudi 表分为 COW 和 MOR两种类型
COW 表适用于离线批量更新场景,对于更新数据,会先读取旧的 base file,然后合并更新数据,生成新的 base file。
MOR 表适用于实时高频更新场景,更新数据会直接写入 log file 中,读时再进行合并。为了减少读放大的问题,会定期合并 log file 到 base file 中。


ro表和rt表区别:
ro 表全称 read oprimized table,对于 MOR 表同步的 xxx_ro 表,只暴露压缩后的 parquet。其查询方式和COW表类似。设置完 hiveInputFormat 之后 和普通的 Hive 表一样查询即可;
rt表示增量视图,主要针对增量查询的rt表;
ro表只能查parquet文件数据, rt表 parquet文件数据和log文件数据都可查;

标签:username,Hudi,CDH6.3,flink,id,test,v4,FlinkCDC2.1,order
From: https://blog.csdn.net/weixin_43566162/article/details/140620369

相关文章

  • Hudi与Spark结合使用
    Hudi与Spark结合......
  • Hudi测试
    实验环境minio-8.0.10http://192.168.137.100:32000/minio/bigdata/spark-operator-1.1.26spark-history-server3.2.2http://192.168.137.100:32627/测试案例案例hudi-spark-test001apiVersion:"sparkoperator.k8s.io/v1beta2"kind:SparkApplicationmetadata:......
  • Grab 基于 Apache Hudi 实现近乎实时的数据分析
    介绍在数据处理领域,数据分析师在数据湖上运行其即席查询。数据湖充当分析和生产环境之间的接口,可防止下游查询影响上游数据引入管道。为了确保数据湖中的数据处理效率,选择合适的存储格式至关重要。Vanilla数据湖解决方案构建在具有Hive元存储的云对象存储之上,其中数据文件以P......
  • 探索GaussDB(DWS)湖仓融合:Hudi与元数据打通的深度解析
    华为云数仓GaussDB(DWS)研发专家高若岳老师,深入解析GaussDB(DWS)数据仓库如何与大数据生态快速对接。随着智能数据时代的到来,数据量爆发式增长,数据形态呈海量化和多样化发展,不再是单一的结构化数据。从海量和多样化的数据做融合分析,创造更多业务价值的诉求日益强烈。在本期《Ga......
  • Hudi部署
    目录前言Hudi的介绍一、Hudi是什么?二、Hudi的特点功能和优势三、Hudi的使用场景Hudi的搭建部署一、准备二、搭建1)搭建JAVA环境和Hadoop环境2)部署zookeeper3)部署Sparkonyarn4)部署maven环境5)部署Hudi环境三、执行编译,构建mavenHudi的简单使用一、准备案例二、......
  • Apache Hudi从零到一:存储格式初探
    在花了大约4年时间致力于ApacheHudi(其中包括3年Committer身份)之后,我决定开始这个博客系列,旨在以有组织且适合初学者的方式展示Hudi的设计和用法。我的目标是确保对分布式数据系统有一定了解的人能够轻松地理解该系列。该系列将包含10篇文章,每篇文章都会深入探讨Hudi......
  • Flink实时写Hudi报NumberFormatException异常
    Flink实时写Hudi报NumberFormatException异常问题描述在Flink项目中,针对Hudi表xxxx_table的bucket_write操作由于java.lang.NumberFormatException异常而从运行状态切换到失败状态。异常信息显示在解析字符串"ddd7a1ec"为整数时出现了问题。报错如下:bucket_write:......
  • Hudi-FlinkSQL导入数据报错:[ERROR] Could not execute SQL statement. Reason: java.l
    问题描述通过FlinkSQL创建Hudi表后,向表中插入数据报错:[ERROR]CouldnotexecuteSQLstatement.Reason:java.lang.ClassNotFoundException:org.apache.hadoop.fs.FSDataInputStream 解决办法向Hudi表中写入数据时,会调用Hadoop的Jar包,但是Flink的lib目录中没有该Jar包。......
  • 记录级别索引:Hudi 针对大型数据集的超快索引
    介绍索引是一个关键组件,有助于Hudi写入端快速更新和删除,并且它在提高查询执行方面也发挥着关键作用。Hudi提供了多种索引类型,包括全局变化的Bloom索引和Simple索引、利用HBase服务的HBase索引、基于哈希的Bucket索引以及通过元数据表实现的多模态索引。索引的选择取决于表大......
  • 1、读取hudi表问题 readDirect unsupported in RemoteBlockReader
    Causedby:java.lang.UnsupportedOperationException:readDirectunsupportedinRemoteBlockReaderatorg.apache.hadoop.hdfs.RemoteBlockReader.read(RemoteBlockReader.java:492)atorg.apache.hadoop.hdfs.DFSInputStream$ByteBufferStr......