首页 > 数据库 >Mysql--B+树--数据结构

Mysql--B+树--数据结构

时间:2024-06-30 20:58:36浏览次数:17  
标签:链表 存储 -- 查询 叶子 索引 Mysql 数据结构 节点

基本概念-B+树/B树

B树(B-tree)和B+树(B+ tree)是常见的自平衡搜索树数据结构,用于在存储和检索大量数据时提供高效的操作。它们具有一些共同的基本概念:

节点(Node):B树和B+树的数据存储在节点中。节点可以包含多个关键字和对应的指针。在B树中,叶子节点和内部节点的结构相同,都存储数据和关键字。而在B+树中,叶子节点只存储关键字和指向数据的指针,而内部节点存储关键字和指向子节点的指针。

关键字(Key):关键字是B树和B+树中用于对数据进行排序和搜索的值。关键字按照升序排列,并被存储在节点中。

指针(Pointer):指针用于连接节点,形成树的结构。在B树和B+树中,指针可以指向子节点、父节点或兄弟节点,实现树的平衡。

根节点(Root Node):根节点是B树和B+树的顶层节点。它是树的起点,通过根节点可以访问到整个树的结构。

叶节点(Leaf Node):叶节点是树的最底层节点。在B树中,叶节点存储数据和关键字。而在B+树中,叶节点只存储关键字和指向数据的指针。叶节点之间通过指针进行连接,形成一个有序的双向链表。

内部节点(Internal Node):内部节点是B树和B+树中非叶节点。它们用于指向子节点,并存储关键字。

B树和B+树作为自平衡的搜索树,具有增删改查的操作,每次操作后都会进行平衡以保持树的高度接近最小值。这样可以确保查询效率的稳定性,并提供高效的范围查询和区间搜索能力。

以上是B树和B+树的基本概念,它们在实际应用中有着广泛的应用,尤其在数据库和文件系统中用于管理和查找大量数据。

B+树

        B+树相对于B树主要有一个关键区别,那就是在每个子节点之间添加了指针。在B+树中,所有的数据记录都存储在叶子节点上,而非叶子节点只存储索引信息。每个非叶子节点都有指向其子节点的指针,形成一个链表结构,这个链表结构使得在范围查询时更加高效。而对于B树,非叶子节点既存储索引信息又存储部分数据记录。所以可以说B+树的设计更适合在数据库等需要范围查询的场景中使用。这种设计有效地减少了磁盘I/O操作的次数,提高了查询效率。

当谈到B+树和B树的区别时,以下是一些重要的方面需要考虑:

  1. 数据记录存储:在B树中,每个节点都包含索引和对应的数据记录。而在B+树中,只有叶子节点包含数据记录,而非叶子节点只包含索引信息。这使得B+树的叶子节点形成了一个有序链表,便于范围查询操作。

  2. 非叶子节点的指针:在B树中,非叶节点包含指向子节点的指针。而在B+树中,非叶子节点只包含指向子节点的指针,并且这些指针形成了一个链表结构。这样的设计可以更快地在范围查询时遍历数据。

  3. 查询性能:由于B+树的叶子节点上存储了较多的数据记录,并且有序排列,所以范围查询效率更高。而B树需要在非叶子节点和叶子节点之间来回检索,相对而言,范围查询的性能较差。

  4. 插入和删除操作:对于B+树来说,由于只需调整叶子节点的指针,所以插入和删除操作相对较快。而B树在插入和删除时可能需要在非叶子节点之间进行调整。

总体来说,B+树在数据库系统中更为常见,尤其在需要范围查询和排序的场景中非常适用。对于大型数据库,B+树的使用可以提供更高的性能和效率。而B树在一些特殊场景中可能仍然有其应用,但在绝大多数情况下,B+树是更好的选择。

B+树复杂度

B+树的复杂度取决于具体的操作,下面是一些常见操作的复杂度分析:

  1. 插入和删除:B+树的插入和删除操作通常具有O(log N)的时间复杂度,其中N是树中的节点数。插入和删除通常需要在树的高度上进行搜索,并且在找到合适的位置后,可能需要进行节点的分裂或合并操作。

  2. 查找:B+树的查找操作也具有O(log N)的时间复杂度。通过从根节点开始,根据索引值逐级搜索子节点,直到叶子节点找到目标记录。

  3. 范围查询:由于B+树的叶子节点形成有序链表,使得范围查询操作非常高效。通过定位范围的起始和结束位置,可以在O(log N + M)的时间复杂度内定位到范围内的M个记录。

注意:这些复杂度分析是对平衡的B+树而言。在实际使用中,性能可能受到硬件、存储引擎、数据分布和索引设计等多个因素的影响。因此,在特定情况下,可能需要进一步考虑这些因素以获得更准确的性能评估。

详解工作流程

  1. B+树的根节点是一个特殊的节点,存储在内存中,并且是树的入口点。根节点可以包含一些索引信息,指向下层节点。

  2. 当需要插入一条记录时,首先从根节点开始,按照索引值逐级向下搜索,找到合适的叶子节点。在叶子节点中,根据索引值的顺序将记录插入到合适的位置。

  3. 如果插入操作导致叶子节点超过了预设的容量,会进行节点的分裂操作。分裂会创建一个新的叶子节点,并将一部分记录移动到新节点中。同时,更新上层节点的索引信息以反映叶子节点的变化。

  4. 当需要删除一条记录时,同样从根节点开始搜索,找到包含目标记录的叶子节点,并将其删除。

  5. 如果删除操作导致叶子节点的记录数过少,会进行节点的合并操作。合并操作会将相邻的叶子节点合并为一个节点,并更新上层节点的索引信息。

  6. 在B+树中进行范围查询时,首先定位到起始位置和结束位置所在的叶子节点,然后按照链表结构遍历那些在范围内的叶子节点,找到满足条件的记录。

总之,B+树的工作流程是从根节点开始,按索引值逐级搜索,最终找到叶子节点来插入、删除或查询记录。在修改树的结构时,可能需要进行节点的分裂和合并操作,以保持树的平衡性。这种工作流程使得B+树在数据库中成为一种高效的索引结构,适用于大规模数据存储和高性能查询的场景。

相对于B树的升级点以及特性点

  1. 范围查询效率更高:B+树的叶子节点形成有序链表,使得范围查询操作更高效。通过链表结构,可以轻松地在范围内遍历叶子节点,从而实现更快速的范围查询。

  2. 只有叶子节点存储数据记录:在B+树中,只有叶子节点存储数据记录,而非叶子节点只存储索引信息。这种设计减少了冗余数据的存储,提高了数据存储的效率。

  3. 非叶子节点的指针:B+树的非叶子节点包含指向子节点的指针,并形成链表结构。这样的设计使得范围查询更高效,因为只需要在链表上遍历节点,而不需要返回到父节点进行下一步搜索。

  4. 插入和删除操作更高效:插入和删除操作只需要在叶子节点上进行操作,而不需要涉及到上层非叶子节点。这样可以减少操作的复杂性和开销,提高了插入和删除操作的效率。

  5. 有利于磁盘I/O的优化:B+树的有序链表结构有利于优化磁盘I/O操作。通过顺序读取叶子节点的数据记录,可以减少随机I/O的次数,提高磁盘访问的效率。

  6. 适用于大型数据库系统:由于B+树的优化特性,它更适用于大型数据库系统。B+树在处理大量数据和频繁查询时表现良好,具有更好的查询性能和数据存储效率。

总体而言,B+树相对于B树提供了更高效的范围查询、更高的插入和删除效率以及更好的存储效率。这使得B+树成为了许多数据库系统中常用的索引结构。

mysql中的B+树

在MySQL中,B+树被广泛应用于索引结构。B+树在数据库系统中解决了多个问题,并且成为了一种优秀的索引方案,这也是为什么它被使用的原因之一。

以下是MySQL中B+树的应用和解决的问题:

  1. 高效数据访问:B+树的有序链表结构和索引在叶子节点的使用,使得在数据库中高效地访问和查询数据成为可能。通过树的平衡和有序性,B+树的查询操作可以在最坏情况下以O(log N)的时间复杂度完成,这意味着即使对于大量数据,查询也可以很快完成。

  2. 范围查询优化:B+树的特性之一是叶子节点形成有序链表,这使得范围查询的执行非常高效。例如,对于给定的范围条件,可以直接定位到范围内的第一个叶子节点,并沿着链表顺序遍历到最后一个满足条件的叶子节点,从而减少了搜索的次数。

  3. 数据排序:B+树可以根据索引的有序性来对数据进行排序。当表使用B+树作为主键索引时,在插入新记录或更新现有记录时,B+树会自动维护有序性。

  4. 减少磁盘访问:B+树的有序链表结构和索引的使用有助于优化磁盘I/O操作。通过顺序读取叶子节点,可以减少磁盘随机I/O的次数,从而提高了查询性能。

  5. 支持快速插入和删除:B+树的插入和删除操作通常只需要操作叶子节点,不涉及上层非叶子节点。这减少了操作的复杂性和开销,提高了插入和删除操作的效率。

总的来说,MySQL中的B+树应用广泛,它解决了高效数据访问、范围查询优化、数据排序和减少磁盘访问等问题。使用B+树作为索引结构可以提供更好的查询性能、支持大型数据库系统,并且具备高效的数据插入和删除操作。

标签:链表,存储,--,查询,叶子,索引,Mysql,数据结构,节点
From: https://blog.csdn.net/2401_82767224/article/details/140086259

相关文章

  • Linux-如何查看服务器中的硬件配置信息
    在Linux服务器上查看硬件配置信息,可以使用一系列命令行工具。以下是一些常用命令来获取不同硬件组件的详细信息:查看CPU信息:查看内存信息:cat/proc/cpuinfo:显示处理器类型、型号、频率、核心数等详细信息。lscpu:提供更为人性化的CPU架构和核心数量等信息。查看硬盘信息: ......
  • 基于Python+Django的商城购物系统设计与实现(源码+数据库+讲解)
    文章目录前言详细视频演示项目运行截图技术框架后端采用Django框架前端框架Vue可行性分析系统测试系统测试的目的系统功能测试数据库表设计代码参考数据库脚本为什么选择我?获取源码前言......
  • Gateway 路由(详解)
    Gateway网关的路由功能可不是简简单单的“转发”请求,在请求到达网关再流转到指定服务之间发生了很多事儿,它不光可以拒绝请求,甚至可以“篡改”请求的参数,我们接下来就去看看路由这里面的门道。路由三重门Gateway中可以定义很多个Route,一个Route就是一套包含完整转发规则的路由......
  • L1-025 正整数A+B python
    python实现注:输入的数据需要在区间[1,1000]内s=input()loc=s.index("")a=s[:loc]b=s[loc+1:]ifa.isdecimal()andb.isdecimal():ifint(a)in[iforiinrange(1,1001)]andint(b)in[iforiinrange(1,1001)]:print("{a}+{b}={sum}......
  • 远程办公梦与现实:西方比中国更早拥抱远程办公的原因
    摘要近年来,远程办公在全球范围内逐渐成为一种趋势。尤其在西方国家,远程办公已经不再是新鲜事物,而是成为许多企业运营的常态。本文将从文化背景、技术基础设施、政策和法律支持、社会观念和企业管理模式五个方面,深入探讨西方国家比中国更早拥抱远程办公的原因,并结合具体企业案......
  • SpingBoot原理
    配置优先级SpringBoot配置的优先级从高到低依次为命令行参数、JNDI属性、Java系统属性、操作系统环境变量、外部配置文件、内部配置文件、注解指定的配置文件和编码中直接指定的默认属性。具体如下:命令行参数:启动应用时,通过命令行指定的参数拥有最高优先级。例如,使用--server......
  • python 列表相关操作
    访问元素index(x):返回列表中第一个值为x的元素的索引。pythonfruits=['apple','banana','cherry']print(fruits.index('banana'))#输出:1count(x):返回列表中值为x的元素的个数。pythonnumbers=[1,2,2,3,2,4]print(numbers.count(2))#输......
  • 基于Java+SSM+Vue的医院住院管理系统设计与实现(源码+lw+部署文档+讲解等)
    文章目录前言详细视频演示项目运行截图技术框架后端采用SpringBoot框架前端框架Vue可行性分析系统测试系统测试的目的系统功能测试数据库表设计代码参考数据库脚本为什么选择我?获取源码前言......
  • 悟空派 & 香橙派驱动0.9英寸OLED(IIC)
    悟空派&香橙派驱动0.9寸OLED(IIC)前言​在linux核心板中,一般会引出许多GPIO引脚,方便开发者使用这些GPIO进行额外开发。在本文中使用IIC端口,驱动0.9寸OLED屏幕,显示远程SSH端口,以及CPU当前温度以及更多主板相关信息。1.开启IIC端口​在命令行输入:#具体文件根据自己系......
  • 阿里云服务器数据库迁云: 数据从传统到云端的安全之旅(WordPress个人博客实战教学)
    ......