首页 > 数据库 >【java】为什么高并发下数据写入不推荐关系数据库?

【java】为什么高并发下数据写入不推荐关系数据库?

时间:2024-06-18 15:32:09浏览次数:32  
标签:存储 java 数据库 写入 OLAP 查询 索引 关系数据库 数据

一、问题解析

说到高并发写,就不得不提及新分布式数据库HTAP,它实现了OLAP和OLTP的融合,可以同时提供数据分析挖掘和关系查询。

事实上,HTAP的OLAP并不是大数据,或者说它并不是我们印象中每天拿几T的日志过来用于离线分析计算的那个大数据。这里更多的是指数据挖掘的最后一环,也就是数据挖掘结果对外查询使用的场景。

对于这个范围的服务,在行业中比较出名的实时数据统计分析的服务有ElasticSearch、ClickHouse,虽然它们的QPS不高,但是能够充分利用系统资源,对大量数据做统计、过滤、查询。但是,相对地,为什么MySQL这种关系数据库不适合做类似的事情呢?

27.1 B+Tree索引与数据量

MySQL我们已经很熟悉了,我们常常用它做业务数据存储查询以及信息管理的工作。相信你也听过“一张表不要超过2000万行数据”这句话,为什么会有这样的说法呢?

核心在于MySQL数据库的索引,实现上和我们的需求上有些冲突。具体点说,我们对外的服务基本都要求实时处理,在保证高并发查询的同时,还需要在一秒内找出数据并返回给用户,这意味着对数据大小以及数据量的要求都非常高高。

MySQL为了达到这个效果,几乎所有查询都是通过索引去缩小扫描数据的范围,然后再回到表中对范围内数据进行遍历加工、过滤,最终拿到我们的业务需要的数据。

事实上,并不是MySQL不能存储更多的数据,而限制我们的多数是数据查询效率问题

那么MySQL限制查询效率的地方有哪些?请看下图:

众所周知,MySQL的InnoDB数据库的索引是B+Tree,B+Tree的特点在于只有在最底层才会存储真正的数据ID,通过这个ID就可以提取到数据的具体内容,同时B+Tree索引最底层的数据是按索引字段顺序进行存储的。

通过这种设计方式,我们只需进行1~3次IO(树深度决定了IO次数)就能找到所查范围内排序好的数据,而树形的索引最影响查询效率的是树的深度以及数据量(数据越独特,筛选的数据范围就越少)。

数据量我么很好理解,只要我们的索引字段足够独特,筛选出来的数据量就是可控的。

但是什么会影响到索引树的深度个数呢?这是因为MySQL的索引是使用Page作为单位进行存储的,而每页只能存储16KB(innodb_page_size)数据。如果我们每行数据的索引是1KB,那么除去Page页的一些固定结构占用外,一页只能放16条数据,这导致树的一些分支装不下更多数据时,我么就需要对索引的深度再加一层。

我们从这个Page就可以推导出:索引第一层放16条,树第二层大概能放2万条,树第三层大概能放2400万条,三层的深度B+Tree按主键查找数据每次查询需要3次IO(一层索引在内存,IO两次索引,最后一次是拿数据)。

不过这个2000万并不是绝对的,如果我们的每行数据是0.5KB,那么大概在4000万以后才会出现第四层深度。而对于辅助索引,一页Page能存放1170个索引节点(主键bigint8字节+数据指针6字节),三层深度的辅助索引大概能记录10亿条索引记录。

可以看到,我们的数据存储数量超过三层时,每次数据操作需要更多的IO操作来进行查询,这样做的后果就是查询数据返回的速度变慢。所以,很多互联网系统为了保持服务的高效,会定期整理数据。

通过上面的讲解,相信你已经对整个查询有画面感了:当我们查询时,通过1~3次IO查找辅助索引,从而找到一批数据主键ID。然后,通过MySQL的MMR算法将这些ID做排序,再回表去聚簇索引按取值范围提取在子叶上的业务数据,将这些数据边取边算或一起取出再进行聚合排序后,之后再返回结果。

可以看到,我们常用的数据库之所以快,核心在于索引用得好。由于加工数据光用索引是无法完成的,我们还需要找到具体的数据进行再次加工,才能得到我们业务所需的数据,这也是为什么我们的字段数据长度和数据量会直接影响我们对外服务的响应速度

同时请你注意,我们一个表不能增加过多的索引,因为索引太多会影响到表插入的性能。并且我们的查询要遵循左前缀原则来逐步缩小查找的数据范围,而不能利用多个CPU并行去查询索引数据。这些大大限制了我们对大数据的处理能力。

另外,如果有数据持续高并发插入数据库会导致MySQL集群工作异常、主库响应缓慢、主从同步延迟加大等问题。从部署结构上来说,MySQL只有主从模式,大批量的数据写操作只能由主库承受,当我们数据写入缓慢时客户端只能等待服务端响应,严重影响数据写入效率。

看到这里,相信你已经理解为什么关系型数据库并不适合太多的数据,其实OLAP的数据库也不一定适合大量的数据,正如我提到的OLAP提供的服务很多也需要实时响应,所以很多时候这类数据库对外提供服务的时候,计算用的数据也是做过深加工的。但即使如此,OLAP和OLTP底层实现仍旧有很多不同。

我们先来分析索引的不同。OLTP常用的是B+Tree,我们知道,B+tree索引是一个整体的树,当我们的数据量大时会影响索引树的深度,如果深度过高就会严重影响其工作效率。对于大量数据,OLAP服务会用什么类型的索引呢?

27.2 稀疏索引LSM Tree与存储

这里重点介绍一下LSM索引。我第一次见到LSM Tree还是从RocksDB(以及LevelDB)上看到的,RocksDB之所以能够得到快速推广并受到欢迎,主要是因为它利用了磁盘顺序写性能超绝的特性,并以较小的性能查询代价提供了写多读少的KV数据存储查询服务,这和关系数据库的存储有很大的不同。

为了更好理解,我们详细讲讲Rocksdb稀疏索引是如何实现的,如下图所示:

我们前面讲过,B+Tree是一个大树,它是一个聚合的完整整体,任何数据的增删改都是在这个整体内进行操作,这就导致了大量的随机读写IO。

RocksDB LSM则不同,它是由一棵棵小树组成,当我们新数据写入时会在内存中暂存,这样能够获得非常大的写并发处理能力。而当内存中数据积累到一定程度后,会将内存中数据和索引做顺序写,落地形成一个数据块。

这个数据块内保存着一棵小树和具体的数据,新生成的数据块会保存在Level 0 层(最大有几层可配置),Level 0 层会有多个类似的数据块文件。结构如下图所示:

每一层的数据块和数据量超过一定程度时,RocksDB合并不同Level的数据,将多个数据块内的数据和索引合并在一起,并推送到Level的下一层。通过这个方式,每一层的数据块个数和数据量就能保持一定的数量,合并后的数据会更紧密、更容易被找到。

这样的设计,可以让一个Key存在于多个Level或者数据块中,但是最新的常用的数据肯定是在Level最顶部或内存(0~4层,0为顶部)中最新的数据块内。

而当我们查询一个key的时候,RocksDB会先查内存。如果没找到,会从Level 0层到下层,每层按生成最新到最老的顺序去查询每层的数据块。同时为了减少IO次数,每个数据块都会有一个BloomFIlter辅助索引,来辅助确认这个数据块中是否可能有对应的Key;如果当前数据块没有,那么可以快速去找下一个数据块,直到找到为止。当然,最惨的情况是遍历所有数据块。

可以看到,这个方式虽然放弃了整体索引的一致性,却换来了更高效的写性能。在读取时通过遍历所有子树来查找,减少了写入时对树的合并代价。

LSM这种方式的数据存储在OLAP数据库中很常用,因为OLAP多数属于写多读少,而当我们使用OLAP对外提供数据服务的时候,多数会通过缓存来帮助数据库承受更大的读取压力。

27.3 列存储数据库

说到这里,不得不提OLAP数据库和OLTP数据之间的另一个区别。我们常用的关系型数据库,属于行式存储数据库Row-based,表数据结构是什么样,它就会按表结构的字段顺序进行存储;而大数据挖掘使用的数据库普遍使用列式存储(Column-based),原因在于我们用关系数据库保存的多数是实体属性和实体关系,很多查询每一列都是不可或缺的。

但是,实时数据分析则相反,很多情况下常用一行表示一个用户或主要实体(聚合根),而列保存这个用户或主要实体是否买过某物、使用过什么App、去过哪里、开什么车、点过什么食品、哪里人等等。

这样组织出来的数据,做数据挖掘、分析对比很方便,不过也会导致一个表有成百上千个字段,如果用行存储的数据引擎,我们对数据的筛选是一行行进行读取的,会浪费大量的IO读取。

而列存储引擎可以指定用什么字段读取所需字段的数据,并且这个方式能够充分利用到磁盘顺序读写的性能,大大提高这种列筛选式的查询,并且列方式更好进行数据压缩,在实时计算领域做数据统计分析的时候,表现会更好。

到了这里相信你已经发现,使用场景不同,数据底层的实现也需要不同的方式才能换来更好的性能和性价比。随着行业变得更加成熟,这些需求和特点会不断挖掘、总结、合并到我们的底层服务当中,逐渐降低我们的工作难度和工作量。

27.4 HTAP

通过前面的讲解,我么可以看到OLAP和OLTP数据库各有特点,并且有不同的发展方向,事实上它们对外提供的数据查询服务都是期望实时快速的,而不同在于如何存储和查找索引。

最近几年流行将两者结合成一套数据库集群服务,同时提供OLAP以及OLTP服务,并且相互不影响,实现行数据库与列数据库的互补。

2022年国产数据库行业内OceanBase、PolarDB等云厂商提供的分布式数据库都在紧锣密鼓地开始支持HTAP。这让我们可以保存同一份数据,根据不同查询的范围触发不同的引擎,共同对外提供数据服务。

可以看到,未来的某一天,我们的数据库既能快速地实时分析,又能快速提供业务数据服务。逐渐地,数据服务底层会出现多套存储、索引结构来帮助我们更方便地实现数据库。

而目前常见的HTAP实现方式,普遍采用一个服务集群内同一套数据支持多种数据存储方式(行存储、列存储),通过对数据提供不同的索引来实现OLAP及OLTP需求,而用户在查询时,可以指定或由数据库查询引擎根据SQL和数据情况,自动选择使用哪个引擎来优化查询。

二、粉丝福利
  • 我根据我从小白到架构师多年的学习经验整理出来了一份50W字面试解析文档、简历模板、学习路线图、java必看学习书籍 、 需要的小伙伴斯我一下,或者评论区扣“求分享”

标签:存储,java,数据库,写入,OLAP,查询,索引,关系数据库,数据
From: https://blog.csdn.net/alen101/article/details/139774751

相关文章

  • HTML5期末考核大作业——学生网页设计作业源码HTML+CSS+JavaScript 中华美德6页面带音
    ......
  • 初学JavaScript之console 应用
    console对象在JavaScript中用于向开发者控制台输出信息,这对于调试和日志记录非常有用。以下是一些常用的console方法及其用法:1.console.log()最常用的方法,用于输出一般信息。console.log('Hello,World!');console.log('Theansweris',42);2.console.error()用......
  • [javascript] JS增强HTML媒体资源的音量
    pre有些页面声音总是太小,又不想调整系统音量,而video标签的volume属性最高只能调到1。于是在网上找到了一个方案:ref:https://atjiu.github.io/2021/05/10/video-above-1.0/ref:https://cwestblog.com/2017/08/17/html5-getting-more-volume-from-the-web-audio-api/codefunc......
  • eclipse maven打包报错: 致命错误: 在类路径或引导类路径中找不到程序包 java.lang的
    还是上来帖张图:1、系统之前是运行在mac上的,打包一切正常,但是现在在win11的eclipse打包就报错了。2、致命错误:在类路径或引导类路径中找不到程序包java.lang,上面的问题应该是找不到java中的jar中的class导致。解决:1)java,运行直接提示找不到命令。发现以管理员运行是......
  • tomcat9 启动时报错:java.lang.IllegalStateException: Malformed \uxxxx encoding的
    1、启动tomcat9springboot项目的时候,直接报下面的错误。2024-06-1809:38:20ApacheCommonsDaemonprocrunstdoutinitialized.09:38:35.597[main]ERRORorg.springframework.boot.SpringApplication-Applicationrunfailedjava.lang.IllegalStateException:Malf......
  • Java项目:springboot优咪商城(计算机毕业设计)
    作者主页:Java毕设网 简介:Java领域优质创作者、Java项目、学习资料、技术互助文末获取源码一、项目介绍优咪网上购物体验系统1.该平台主要有两大功能:(1)浏览平台官方和认证作者提供的篮球相关信息,信息类型包括:视频,新闻,评论类文章,比赛结果(2)篮球周边商城,商品分类球......
  • Javaweb实现简易记事簿 jdbc实现Java连接数据库
    //注册-[]获取register的数据,从表单传过来将(账户,密码,用户名)上面的数据写入数据库中,用jdbc(插入)加载数据库驱动,连接数据库,发送SQL加载数据库有可能失败保险起见抛一个异常返回判断,如果注册成功则提醒用户注册成功,并且跳转到登录页面进行登录。如果注册失败则提醒用户注册失败,......
  • java之sql注入代码审计
    java之sql注入代码审计前言其实找到漏洞原因很简单,主要想学习一下JDBCsql的过程JDBC简单介绍Java通过java.sql.DriverManager来管理所有数据库的驱动注册,所以如果想要建立数据库连接需要先在java.sql.DriverManager中注册对应的驱动类,然后调用getConnection方法才能连接上数......
  • 基于Java+SpringBoot+Vue+elementUI的学生宿舍管理平台的设计与开发
    第一章绪论1.1选题背景和意义1.2国内外学生宿舍管理平台现状第二章相关技术简介2.1开发工具介绍2.1.1IDEA2.1.2VSCode2.1.3Navicat2.1.4宝塔面板2.2关键技术介绍2.2.1Java2.2.2SpringBoot2.2.3Mybatis2.2.4Vue2.2.5MySQL2.2.6Redis2.2.7E......
  • javascript-obfuscator混淆
    安装npminstalljavascript-obfuscator-g配置重度混淆,性能低性能下降50-100%{"compact":true,"controlFlowFlattening":true,"controlFlowFlatteningThreshold":0.75,//设置为0到1之间的值"deadCodeInjection":tr......