首页 > 数据库 >[转帖]MySQL多版本并发控制机制(MVCC)-源码浅析

[转帖]MySQL多版本并发控制机制(MVCC)-源码浅析

时间:2024-01-22 09:03:14浏览次数:33  
标签:read 浅析 trx 源码 版本 MVCC id select view

https://zhuanlan.zhihu.com/p/144682180

 

MySQL多版本并发控制机制(MVCC)-源码浅析

前言

作为一个数据库爱好者,自己动手写过简单的SQL解析器以及存储引擎,但感觉还是不够过瘾。<<事务处理-概念与技术>>诚然讲的非常透彻,但只能提纲挈领,不能让你玩转某个真正的数据库。感谢cmake,能够让我在mac上用xcode去debug MySQL,从而能去领略它的各种实现细节。 笔者一直对数据库的隔离性很好奇,此篇博客就是我debug MySQL过程中的偶有所得。 (注:本文的MySQL采用的是MySQL-5.6.35版本)

MVCC(多版本并发控制机制)

隔离性也可以被称作并发控制、可串行化等。谈到并发控制首先想到的就是锁,MySQL通过使用两阶段锁的方式实现了更新的可串行化,同时为了加速查询性能,采用了MVCC(Multi Version Concurrency Control)的机制,使得不用锁也可以获取一致性的版本。

Repeatable Read

MySQL的通过MVCC以及(Next-Key Lock)实现了可重复读(Repeatable Read),其思想(MVCC)就是记录数据的版本变迁,通过精巧的选择不同数据的版本从而能够对用户呈现一致的结果。如下图所示:

上图中,(A=50|B=50)的初始版本为1。 1.事务t1在select A时候看到的版本为1,即A=50 2.事务t2对A和B的修改将版本升级为2,即A=0,B=100 3.事务t1再此select B的时候看到的版本还是1, 即B=50 这样就隔离了版本的影响,A+B始终为100。

Read Commit

而如果不通过版本控制机制,而是读到最近提交的结果的话,则隔离级别是read commit,如下图所示:

在这种情况下,就需要使用锁机制(例如select for update)将此A,B记录锁住,从而获得正确的一致结果,如下图所示:

 

MVCC的优势

当我们要对一些数据做一些只读操作来检查一致性,例如检查账务是否对齐的操作时候,并不希望加上对性能损耗很大的锁。这时候MVCC的一致性版本就有很大的优势了。

MVCC(实现机制)

本节就开始谈谈MVCC的实现机制,注意MVCC仅仅在纯select时有效(不包括select for update,lock in share mode等加锁操作,以及update\insert等)。

select运行栈

首先我们追踪一下一条普通的查询sql在mysql源码中的运行过程,sql为(select * from test);

其运行栈为:

handle_one_connection  MySQL的网络模型是one request one thread
 |-do_handle_one_connection
    |-do_command
        |-dispatch_command
            |-mysql_parse    解析SQL
                |-mysql_execute_command
                    |-execute_sqlcom_select    执行select语句
                        |-handle_select
                            ...一堆parse join 等的操作,当前并不关心
                            |-*tab->read_record.read_record 读取记录

由于mysql默认隔离级别是repeatable_read(RR),所以read_record重载为 rr_sequential(当前我们并不关心select通过index扫描出row之后再通过condition过滤的过程)。继续追踪:

read_record
 |-rr_sequential
    |-ha_rnd_next
        |-ha_innobase::rnd_next 这边就已经到了innodb引擎了
            |-general_fetch
                |-row_search_for_mysql
                    |-lock_clust_rec_cons_read_sees 这边就是判断并选择版本的地方

让我们看下该函数内部:

bool lock_clust_rec_cons_read_sees(const rec_t* rec /*由innodb扫描出来的一行*/,....){
    ...
    // 从当前扫描的行中获取其最后修改的版本trx_id(事务id)
    trx_id = row_get_rec_trx_id(rec, index, offsets);
    // 通过参数(一致性快照视图和事务id)决定看到的行快照
    return(read_view_sees_trx_id(view, trx_id));
}

read_view的创建过程

我们先关注一致性视图的创建过程,我们先看下read_view结构:

struct read_view_t{
    // 由于是逆序排列,所以low/up有所颠倒
    // 能看到当前行版本的高水位标识,>= low_limit_id皆不能看见
    trx_id_t    low_limit_id;
    // 能看到当前行版本的低水位标识,< up_limit_id皆能看见
    trx_id_t    up_limit_id;
    // 当前活跃事务(即未提交的事务)的数量
    ulint        n_trx_ids;
    // 以逆序排列的当前获取活跃事务id的数组
    // 其up_limit_id<tx_id<low_limit_id
    trx_id_t*    trx_ids;    
    // 创建当前视图的事务id
    trx_id_t    creator_trx_id;
    // 事务系统中的一致性视图链表
    UT_LIST_NODE_T(read_view_t) view_list;
};

然后通过debug,发现创建read_view结构也是在上述的rr_sequential中操作的,继续跟踪调用栈:

rr_sequential
 |-ha_rnd_next
     |-rnd_next
         |-index_first 在start_of_scan为true时候走当前分支index_first
             |-index_read
                 |-row_search_for_mysql
                     |-trx_assign_read_view

我们看下row_search_for_mysql里的一个分支:

row_search_for_mysql:
// 这边只有select不加锁模式的时候才会创建一致性视图
else if (prebuilt->select_lock_type == LOCK_NONE) {        // 创建一致性视图
        trx_assign_read_view(trx);
        prebuilt->sql_stat_start = FALSE;
}

上面的注释就是select for update(in share model)不会走MVCC的原因。让我们进一步分析trx_assign_read_view函数:

trx_assign_read_view
 |-read_view_open_now
     |-read_view_open_now_low

好了,终于到了创建read_view的主要阶段,主要过程如下图所示:

 

 

代码过程为:

static read_view_t* read_view_open_now_low(trx_id_t    cr_trx_id,mem_heap_t*    heap)
{
    read_view_t*    view;
    // 当前事务系统中max_trx_id(即尚未被分配的trx_id)设置为low_limit_no
    view->low_limit_no = trx_sys->max_trx_id;
    view->low_limit_id = view->low_limit_no;
    // CreateView构造函数,会将非当前事务和已经在内存中提交的事务给剔除,即判断条件为
    // trx->id != m_view->creator_trx_id&& !trx_state_eq(trx, TRX_STATE_COMMITTED_IN_MEMORY)的
    // 才加入当前视图列表
    ut_list_map(trx_sys->rw_trx_list, &trx_t::trx_list, CreateView(view));
    if (view->n_trx_ids > 0) {
        // 将当前事务系统中的最小id设置为up_limit_id,因为是逆序排列
        view->up_limit_id = view->trx_ids[view->n_trx_ids - 1];
    } else {
        // 如果当前没有非当前事务之外的活跃事务,则设置为low_limit_id
        view->up_limit_id = view->low_limit_id;
    }
    // 忽略purge事务,purge时,当前事务id是0
    if (cr_trx_id > 0) {
        read_view_add(view);
    }
    // 返回一致性视图
    return(view);
}

行版本可见性:

由上面的lock_clust_rec_cons_read_sees可知,行版本可见性由read_view_sees_trx_id函数判断:

/*********************************************************************//**
Checks if a read view sees the specified transaction.
@return    true if sees */
UNIV_INLINE
bool
read_view_sees_trx_id(
/*==================*/
    const read_view_t*    view,    /*!< in: read view */
    trx_id_t        trx_id)    /*!< in: trx id */
{
    if (trx_id < view->up_limit_id) {

        return(true);
    } else if (trx_id >= view->low_limit_id) {

        return(false);
    } else {
        ulint    lower = 0;
        ulint    upper = view->n_trx_ids - 1;

        ut_a(view->n_trx_ids > 0);

        do {
            ulint        mid    = (lower + upper) >> 1;
            trx_id_t    mid_id    = view->trx_ids[mid];

            if (mid_id == trx_id) {
                return(FALSE);
            } else if (mid_id < trx_id) {
                if (mid > 0) {
                    upper = mid - 1;
                } else {
                    break;
                }
            } else {
                lower = mid + 1;
            }
        } while (lower <= upper);
    }

    return(true);
}

其实上述函数就是一个二分法,read_view其实保存的是当前活跃事务的所有事务id,如果当前行版本对应修改的事务id不在当前活跃事务里面的话,就返回true,表示当前版本可见,否则就是不可见,如下图所示。

 

接上述lock_clust_rec_cons_read_sees的返回:

if (UNIV_LIKELY(srv_force_recovery < 5)
                && !lock_clust_rec_cons_read_sees(
                    rec, index, offsets, trx->read_view)){
    // 当前处理的是当前版本不可见的情况
    // 通过undolog来返回到一致的可见版本
    err = row_sel_build_prev_vers_for_mysql(
                    trx->read_view, clust_index,
                    prebuilt, rec, &offsets, &heap,
                    &old_vers, &mtr);                
} else{
    // 可见,然后返回
}

undolog搜索可见版本的过程

我们现在考察一下row_sel_build_prev_vers_for_mysql函数:

row_sel_build_prev_vers_for_mysql
 |-row_vers_build_for_consistent_read

主要是调用了row_ver_build_for_consistent_read方法返回可见版本:

dberr_t row_vers_build_for_consistent_read(...)
{
    ......
    for(;;){
        err = trx_undo_prev_version_build(rec, mtr,version,index,*offsets, heap,&prev_version);
        ......
        trx_id = row_get_rec_trx_id(prev_version, index, *offsets);
        // 如果当前row版本符合一致性视图,则返回
        if (read_view_sees_trx_id(view, trx_id)) {
            ......
            break;
        }
        // 如果当前row版本不符合,则继续回溯上一个版本(回到for循环的地方)
        version = prev_version;
    }
    ......
}

整个过程如下图所示:

至于undolog怎么恢复出对应版本的row记录就又是一个复杂的过程了,由于篇幅原因,在此略过不表。

read_view创建时机再讨论

在创建一致性视图的row_search_for_mysql的代码中

// 只有非锁模式的select才创建一致性视图
else if (prebuilt->select_lock_type == LOCK_NONE) {        // 创建一致性视图
        trx_assign_read_view(trx);
        prebuilt->sql_stat_start = FALSE;
}

trx_assign_read_view中由这么一段代码

// 一致性视图在一个事务只创建一次
if (!trx->read_view) {
        trx->read_view = read_view_open_now(
            trx->id, trx->global_read_view_heap);
        trx->global_read_view = trx->read_view;
    }

所以综合这两段代码,即在一个事务中,只有第一次运行select(不加锁)的时候才会创建一致性视图,如下图所示:

笔者构造了此种场景模拟过,确实如此。

MVCC和锁的同时作用导致的一些现象

MySQL是通过MVCC和二阶段锁(2PL)来兼顾性能和一致性的,但是由于MySQL仅仅在select时候才创建一致性视图,而在update等加锁操作的时候并不做如此操作,所以就会产生一些诡异的现象。如下图所示:

如果理解了update不走一致性视图(read_view),而select走一致性视图(read_view),就可以很好解释这个现象。 如下图所示:

 

总结

MySQL为了兼顾性能和ACID使用了大量复杂的机制,2PL(两阶段锁)和MVCC就是其实现的典型。幸好可以通过xcode等IDE进行方便的debug,这样就可以非常精确加便捷的追踪其各种机制的实现。希望这篇文章能够帮助到喜欢研究MySQL源码的读者们。

标签:read,浅析,trx,源码,版本,MVCC,id,select,view
From: https://www.cnblogs.com/jinanxiaolaohu/p/17959918

相关文章

  • 【OpenCV】:浅析 OpenCV 中的图像数据结构 Mat
    以下内容主要来自OpenCV中的mat.hpp这个头文件关于MatMat是OpenCV中用来存储图像数据的基础数据结构,原话是Itcanbeusedtostorerealorcomplex-valuedvectorsandmatrices,grayscaleorcolorimages,voxelvolumes,vectorfields,pointclouds,tensors,......
  • Feign源码解析7:nacos loadbalancer不支持静态ip的负载均衡
    背景在feign中,一般是通过eureka、nacos等获取服务实例,但有时候调用一些服务时,人家给的是ip或域名,我们这时候还能用Feign这一套吗?可以的。有两种方式,一种是直接指定url:这种是服务端自己会保证高可用、负载均衡那些。但也可能对方给了多个url(一般不会这样,但是在app场景下,为了......
  • Rocketmq学习3——消息发送原理源码浅析
    一丶概述RocketMQ消息发送的原理流程可以分为以下几个步骤:1.创建生产者在发送消息前,客户端首先需要创建一个消息生产者(Producer)实例,并设置必要的配置参数,如NameServer地址、生产组名称、消息发送失败的重试次数等。2.启动生产者创建生产者后,需要调用启动方法来初始化生产......
  • Linux内核accept系统调用源码分析
    内核版本:Linux3.10内核源码地址:https://elixir.bootlin.com/linux/v3.10/source(包含各个版本内核源码,且网页可全局搜索函数)一、应用层-accept()函数/***sockfd:监听socket的文件描述符*addr:存放地址信息的结构体的首地址(用来保存客户端的IP、Port)*addrlen:存放地......
  • springboot中优雅的个性定制化错误页面+源码解析
    boot项目的优点就是帮助我们简化了配置,并且为我们提供了一系列的扩展点供我们使用,其中不乏错误页面的个性化开发。理解错误响应流程我们来到org.springframework.boot.autoconfigure.web.servlet.error下的ErrorMvcAutoConfiguration这里面配置了错误响应的规则。主要介绍里面注册......
  • ConcurrentHashMap源码逐行解读基于jdk1.8
    前导知识//node数组最大容量:2^30=1073741824privatestaticfinalintMAXIMUM_CAPACITY=1<<30;//默认初始值,必须是2的幕数privatestaticfinalintDEFAULT_CAPACITY=16;//数组可能最大值,需要与toArray()相关方法关联st......
  • 深度了解mysql事务mvcc实现原理
    一:事务概念:一组原子性的sql查询语句,也可以看作是一个工作单元特点:要么全部执行成功,要么全部执行失败一个有效的事务需满足的条件(ACID)原子性(Atomicity)一个事务必须被视为一个单独的内部最小的,”不可分“的工作单元,以确保事务要么全部执行,要么全部执行失败,当一个事务具有原子性的时候......
  • MyBatis 系列:MyBatis 源码环境搭建
    目录一、环境准备二、下载MyBatis源码和MyBatis-Parent源码三、创建空项目、导入项目四、编译mybatis-parent五、编译mybatis六、测试总结一、环境准备jdk:17maven:3.9.5二、下载MyBatis源码和MyBatis-Parent源码Mybatis:https://github.com/mybatis/mybatis-3.gitMy......
  • Feign源码解析6:如何集成discoveryClient获取服务列表
    背景我们上一篇介绍了feign调用的整体流程,在@FeignClient没有写死url的情况下,就会生成一个支持客户端负载均衡的LoadBalancerClient。这个LoadBalancerClient可以根据服务名,去获取服务对应的实例列表,然后再用一些客户端负载均衡算法,从这堆实例列表中选择一个实例,再进行http调用即......
  • 将小部分源码设计精髓带入到开发中来(工厂模式、适配器模式、抽象类、监听器)
    前言咋说呢,大学期间阅读过很多源码(Aop、Mybatis、Ioc、SpringMvc…),刚开始看这些源码的时候觉得云里雾里,一个没什么代码量的人突然去接触这种商业帝国级别的成品源码的时候,根本无从下手,这种感觉很难受,但是也庆幸自己熬过了那段难忘且充实的日子,随着自己代码量的慢慢增多,也开始慢慢......