1、主从复制
1.1、常用命令
1、主从复制
从库操作
replicaof 主库IP 主库端口
或者
slaveof 主库IP 主库端口
2、取消主从
slaveof no one
1.2、主从复制原理和工作流程
1、slave启动,同步初请
slave启动成功连接到master后会发送一个sync命令
slave首次全新连接master,一次完全同步(全量复制)将被自动执行,slave自身原有数据会被master数据覆盖清除
2、首次连接,全量复制
master节点收到sync命令后会开始在后台保存快照(即RDB持久化,主从复制会触发RDB),同时收集所有接收到的用于修改数据集命令缓存起来,
master节点指定RDB持久化完后master将RDB快照文件和所有缓存的命令发送到所有slave,以完成一次完全同步
slave服务在接收到数据文件后,将其存盘并加载到内存中,从而完成复制初始化
3、心跳持续,保持通信
master发出ping包的周期,默认是10秒,repl-ping-replica-period 10
4、进入平稳,增量复制
master继续将新的所有收集到的修改命令自动一次传给slave,完成同步
5、从机下线,重连续传
master会检查backlog里面的offset,master和slave都会保存一个复制的offset还有一个masterid
offset是保存在backlog中的,master只会把已经复制的offset后面的数据复制给slave,类似断点续传
1.3、主从复制的问题
复制延时,新号衰减
由于所有的写操作都是先在Master上操作,然后同步更新到Slave上,所以从Master同步到Slave机器有一定的延迟,
当系统很繁忙的时候,延迟问题会更加严重,Slave机器数量的增加也会使这个问题更加严重。
2、哨兵
2.1、概述
1、是什么
吹哨人巡查监控后台master主机是否故障,如果故障了根据投票数自动将某一个从库转换为新主库,继续对外服务
2、能干啥
主从监控
监控主从redis库运行是否正常
消息通知
哨兵可以将故障转移的结果发送给客户端
故障转移
如果master异常,则会进行主从切换,将其中一个slave作为新master
配置中心
客户端通过连接哨兵来获得当前redis服务的主节点地址
2.2、重要参数
sentinel monitor <master-name> <ip> <redis-port> <quorum>
设置要监控的master服务器
quorum表示最少有几个哨兵认可客观下线,同意故障迁移的法定票数
有时候一个sentinel会因为网络堵塞而误以为一个master redis已经死掉了,在sentinel集群环境下需要多个sentinel互相沟通来确认某个master是否真的死了
quorum这个参数是进行客观下线的一个依据,意思是至少有quorum个sentinel认为这个master有故障,才会对这个master进行下线以及故障转移。
因为有的时候,某个sentinel节点可能因为自身网络原因,导致无法连接master,而此时master并没有出现故障
所以,这就需要多个sentinel都一致认为该master有问题,才可以进行下一步操作,这就保证了公平性和高可用。
sentinel auth-pass <master-name> <password>
master设置了密码,连接master服务的密码
sentinel down-after-milliseconds <master-name> <milliseconds>:
指定多少毫秒之后,主节点没有应答哨兵,此时哨兵主观上认为主节点下线
sentinel parallel-syncs <master-name> <nums>:
表示允许并行同步的slave个数,当Master挂了后,哨兵会选出新的Master,此时,剩余的slave会向新的master发起同步数据
sentinel failover-timeout <master-name> <milliseconds>:
故障转移的超时时间,进行故障转移时,如果超过设置的毫秒,表示故障转移失败
sentinel notification-script <master-name> <script-path> :
配置当某一事件发生时所需要执行的脚本
sentinel client-reconfig-script <master-name> <script-path>:
客户端重新配置主节点参数脚本
2.3、主从配置变化
文件中的内容,在运行期间会被sentinel动态进行更改
master-slave切换后,master_redis.conf、slave_redis.conf和sentinel.conf的内容都会发生改变
即master_redis.conf总会多一行slaveof的配置,sentinel.conf的监控目标会随之调换
2.4、哨兵运行流程和选举原理
1、三个哨兵监控一主两从,正常运行
2、SDown主观下线(Subjectively Down)
所谓主观下线(Subjectively Down, 简称 SDOWN)指的是单个Sentinel实例对服务器做出的下线判断,即单个sentinel认为某个服务下线(有可能是接收不到订阅,之间的网络不通等等原因)。
主观下线就是说如果服务器在[sentinel down-after-milliseconds]给定的毫秒数之内没有回应PING命令或者返回一个错误消息, 那么这个Sentinel会主观的(单方面的)认为这个master不可以用了
sentinel down-after-milliseconds <masterName> <timeout>
表示master被当前sentinel实例认定为失效的间隔时间,这个配置其实就是进行主观下线的一个依据
master在多长时间内一直没有给Sentine返回有效信息,则认定该master主观下线。也就是说如果多久没联系上redis-servevr,认为这个redis-server进入到失效(SDOWN)状态。
3、ODown客观下线(Objectively Down)
ODOWN需要一定数量的sentinel,多个哨兵达成一致意见才能认为一个master客观上已经宕掉
sentinel monitor <master-name> <ip> <redis-port> <quorum>
master-name是对某个master+slave组合的一个区分标识(一套sentinel可以监听多组master+slave这样的组合)
quorum这个参数是进行客观下线的一个依据,法定人数/法定票数
意思是至少有quorum个sentinel认为这个master有故障才会对这个master进行下线以及故障转移。
因为有的时候,某个sentinel节点可能因为自身网络原因导致无法连接master,而此时master并没有出现故障,所以这就需要多个sentinel都一致认为该master有问题,才可以进行下一步操作,这就保证了公平性和高可用。
4、选举出领导者哨兵
当主节点被判断客观下线以后,各个哨兵节点会进行协商,先选举出一个领导者哨兵节点并由该领导者节点进行failover(故障迁移)
哨兵领导者怎么选举出来的(Raft算法)
监视该主节点的所有哨兵都有可能被选为领导者,选举使用的算法是Raft算法;Raft算法的基本思路是先到先得:
即在一轮选举中,哨兵A向B发送成为领导者的申请,如果B没有同意过其他哨兵,则会同意A成为领导者
5、领导者哨兵推动故障切换并选出一个新的master
5.1、某个slave被选中为新master
选出新master的规则,剩余slave节点健康前提下
redis.conf文件中,优先级slave-priority或者replica-priority最高的从节点(数字越小,优先级越高)
复制偏移位置offset最大的从节点
最小Run ID的从节点,字典顺序,ASCII码
5.2、重置主从
Sentinel leader会对选举出的新master执行slaveof no one操作,将其提升为master节点
Sentinel leader会向其它slave发送命令,让剩余的slave成为新的master节点的slave
5.3、老master变为从
将之前下线的老master设置为新选出的新master的从节点,当老master重新上线后,它会成为新master的从节点
Sentinel leader会让原来的master降级为slave并恢复正常工作
3、集群
3.1、概述
1、是什么
由于数据量过大,单个Master复制集难以承担
因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Redis的集群,其作用是提供在多个Redis节点间共享数据的程序集
2、能干啥
redis集群支持多个master,每个master又可以挂载多个slave
读写分离
支持数据的高可用
支持海量数据的读写存储操作
由于cluster自带Sentinel的故障转移机制,内置了高可用的支持,无需再去使用哨兵功能
客户端与Redis的节点连接,不再需要连接集群中所有的节点,只需要连接集群中任意的一个可用节点即可
槽位slot负责分配到各个物理服务节点,由对应的集群来负责维护节点、插槽和数据之间的关系
3.2、集群算法-分片-槽位slot
3.2.1、槽位slot
3.2.2、分片
分片是什么
使用Redis集群时我们会将存储的数据分散到多台redis机器上,这称为分片。简言之,集群中的每个Redis实例都被认为是整个数据的一个分片。
如何找到给定key的分片
为了找到给定key的分片,我们对key进行CRC16(key)算法处理并通过对总分片数量取模。
然后,使用确定性哈希函数,这意味着给定的key将多次始终映射到同一个分片,我们可以推断将来读取特定key的位置。
3.2.3、slot槽位映射
1、哈希取余分区
2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:
hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。
优点:
简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。
使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。
缺点:
原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,
如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:Hash(key)/3会变成Hash(key) /?。
此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。
某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。
2、一致性哈希算法分区
一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。
当服务器个数发生变动时,尽量减少影响客户端到服务器的映射关系
2.1、算法构建一致性哈希环
一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],
这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。
它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对2^32取模,简单来说,
一致性Hash算法将整个哈希值空间组织成一个虚拟的圆环,如假设某哈希函数H的值空间为0-2^32-1(即哈希值是一个32位无符号整形),整个哈希环如下图:
整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到2^32-1,也就是说0点左侧的第一个点代表2^32-1,
0和2^32-1在零点中方向重合,我们把这个由2^32个点组成的圆环称为Hash环。
2.2、redis服务器IP节点映射
将集群中各个IP节点映射到环上的某一个位置。
将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。
假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:
2.3、key落到服务器的落键规则
当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,
从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。
如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,
数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。
优点
一致性哈希算法的容错性
假设Node C宕机,可以看到此时对象A、B、D不会受到影响。
一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。
简单说,就是C挂了,受到影响的只是B、C之间的数据且这些数据会转移到D进行存储。
一致性哈希算法的扩展性
数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可,
不会导致hash取余全部数据重新洗牌。
缺点
一致性哈希算法的数据倾斜问题
Hash环的数据倾斜问题
一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,
3、哈希槽分区
为了解决一致性哈希算法的数据倾斜问题
哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。
能干什么
解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,
现在就相当于节点上放的是槽,槽里放的是数据。
槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配
多少个hash槽
一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。
集群会记录节点和槽的对应关系,解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取模,余数是几key就落入对应的槽里。
HASH_SLOT = CRC16(key) mod 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。
3.2.4、redis槽位16384
Redis集群并没有使用一致性hash而是引入了哈希槽的概念。
Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。
但为什么哈希槽的数量是16384(2^14)个呢?
CRC16算法产生的hash值有16bit,该算法可以产生2^16=65536个值。
换句话说值是分布在0~65535之间,有更大的65536不用为什么只用16384就够?
作者在做mod运算的时候,为什么不mod65536,而选择mod16384? HASH_SLOT = CRC16(key) mod 65536为什么没启用
正常的心跳数据包带有节点的完整配置,可以用幂等方式用旧的节点替换旧节点,以便更新旧的配置。
这意味着它们包含原始节点的插槽配置,该节点使用2k的空间和16k的插槽,但是会使用8k的空间(使用65k的插槽)。
同时,由于其他设计折衷,Redis集群不太可能扩展到1000个以上的主节点。
因此16k处于正确的范围内,以确保每个主机具有足够的插槽,最多可容纳1000个矩阵,但数量足够少,可以轻松地将插槽配置作为原始位图传播。
请注意,在小型群集中,位图将难以压缩,因为当N较小时,位图将设置的slot / N位占设置位的很大百分比。
(1)如果槽位为65536,发送心跳信息的消息头达8k,发送的心跳包过于庞大。
在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为65536时,这块的大小是: 65536÷8÷1024=8kb
在消息头中最占空间的是myslots[CLUSTER_SLOTS/8]。 当槽位为16384时,这块的大小是: 16384÷8÷1024=2kb
因为每秒钟,redis节点需要发送一定数量的ping消息作为心跳包,如果槽位为65536,这个ping消息的消息头太大了,浪费带宽。
(2)redis的集群主节点数量基本不可能超过1000个。
集群节点越多,心跳包的消息体内携带的数据越多。如果节点过1000个,也会导致网络拥堵。
因此redis作者不建议redis cluster节点数量超过1000个。 那么,对于节点数在1000以内的redis cluster集群,16384个槽位够用了。
没有必要拓展到65536个。
(3)槽位越小,节点少的情况下,压缩比高,容易传输
Redis主节点的配置信息中它所负责的哈希槽是通过一张bitmap的形式来保存的,在传输过程中会对bitmap进行压缩,
但是如果bitmap的填充率slots / N很高的话(N表示节点数),bitmap的压缩率就很低。 如果节点数很少,而哈希槽数量很多的话,bitmap的压缩率就很低。
3.2.5、redis集群不保证强一致性
redis集群不保证强一致性,这意味着在特定的条件下,redis集群可能会丢掉一些被系统收到的写入请求命令
3.3、集群操作
1、构建主从
redis-cli -a 111111 --cluster create --cluster-replicas 1 redisIP:redisPort redisIP:redisPort
2、主从切换
从节点:
cluster failover
3、集群添加新节点
redis-cli -a 密码 --cluster add-node NewredisIP:6387 clusterredisIP:6381
4、检查集群情况
redis-cli -a 密码 --cluster check 真实ip地址:6381
5、分配槽位
redis-cli -a 密码 --cluster reshard IP地址:端口号
6、为主节点添加从节点
redis-cli -a 密码 --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID
7、删除节点
redis-cli -a 密码 --cluster del-node ip:端口 6387节点ID
3.4、集群常用命令和CRC16算法
不在同一slot槽位下的多键操作支持不好,通识占位符登场
不在同一个slot槽位下的键值无法使用mset、mget等多键操作
可以通过{}来定义同一个组的概念,使key中{}内相同内容的键值对放到一个slot槽位去,对照下图类似k1k2k3都映射为x,自然槽位一样
mset k1{x} 11 key2{x} 22 key3{x} 33
redis集群有14384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽
集群中的每个节点负责一部分hash槽
集群是否完整才能对外提供服务
cluster-require-full-coverage: 默认值 yes , 即需要集群完整性,方可对外提供服务
通常情况,如果这3个小集群中,任何一个(1主1从)挂了,你这个集群对外可提供的数据只有2/3了, 整个集群是不完整的, redis 默认在这种情况下,是不会对外提供服务的。
如果你的诉求是,集群不完整的话也需要对外提供服务,需要将该参数设置为no ,这样的话你挂了的那个小集群是不行了,但是其他的小集群仍然可以对外提供服务。
cluster countkeysinslot槽位数组编号
1,该槽位被占用
2,该槽位没占用
cluster keyslot
该键应该存在哪个槽位上
标签:Redis7,redis,复制,master,哈希,sentinel,集群,节点
From: https://blog.51cto.com/u_13236892/8876818