首页 > 数据库 >关于点赞业务对MySQL和Redis和MongoDB的思考

关于点赞业务对MySQL和Redis和MongoDB的思考

时间:2023-11-25 20:22:54浏览次数:57  
标签:publication MongoDB Redis System 点赞 type id userId

点赞

​ 在我个人理解中,点赞业务比较频繁,很多人业务可能都会有这个,比如:博客,视频,文章,动态,评论等,但是不应该是核心业务,不应该大量地请求MySQL数据库,给数据库造成大量的资源消耗,MySQL的数据库是非常宝贵的.

以某音为例,当我去搜索的时候,全抖音比较高的点赞数目应该是在1200w - 2000w,我们自己的业务肯定答不到这么高的,但是假设有10个100w的点赞的博客,user_id为用户ID,publication_id为博客的id

  1. 第一种方式是直接操作数据库.每次有点赞或者取消点赞操作时,就更新MySQL数据库的点赞数.同时,插入或者更新一个user_id和publication_id的数据行,如果点赞操作非常频繁,会对数据库产生很大的压力.如果有大量的点赞记录,会对数据库产生很大的数据量,一篇文章,100w+的点赞的记录,对于MySQL来说,是非常恐怖的.

  2. 第二种方式是通过MySQL + Redis的Set来实现,具体代码如下,以下的代码为B站Redis黑马点评项目:

    @Override
    public Result likeBlog(Long id){
        // 1. 获取登录用户
        Long userId = UserHolder.getUser().getId();
    
        // 2. 判断当前登录用户是否已经点赞
        String key = BLOG_LIKED_KEY + id;
        Boolean isMember = stringRedisTemplate.opsForSet().isMember(key, userId.toString());
    
        if(BooleanUtil.isFalse(isMember)){
            // 3. 如果未点赞,可以点赞
            // 3.1 数据库点赞数+1
            boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
    
            // 3.2 保存用户到Redis的set集合
            if(isSuccess){
                stringRedisTemplate.opsForSet().add(key, userId.toString());
            }
        } else {
            // 4. 如果已点赞,取消点赞
            // 4.1 数据库点赞数-1
            boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
    
            // 4.2 把用户从Redis的set集合移除
            if(isSuccess){
                stringRedisTemplate.opsForSet().remove(key, userId.toString());
            }
        }
    }
    
    

    这样造成的问题是,Redis是内存数据库,点赞信息存储在内存中。当点赞数量非常大时,会占用大量内存。

    下面测试一下,一个key为"userId:114514:publication_id:738836",value为100000-1100000的数据

    • 数据量

       scard userId:114514:publication_id:738836
      

      image-20231105180611714

    • 判断一个value是否存在这个set中-----(对应的业务为"判断当前登录用户是否已经点赞")

          @Test
          public void selectBigKey() {
              String key = "userId:114514:publication_id:738836";
              String value1 = "100000";
              String value2 = "5000000";
              // 记录开始时间
              long startTime = System.nanoTime();
      
              boolean cacheSet1 = RedisUtils.containsInCacheSet(key, value1);
              if (cacheSet1) {
                  System.out.println("代码2:" + "存在这个value");
              } else {
                  System.out.println("代码2:" + "不存在这个value");
              }
              // 记录结束时间
              long endTime = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime = (endTime - startTime) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("代码执行时间1: " + executionTime + " 毫秒");
      
              // 记录开始时间
              long startTime2 = System.nanoTime();
      
              boolean cacheSet2 = RedisUtils.containsInCacheSet(key, value2);
              if (cacheSet2) {
                  System.out.println("代码2:" + "存在这个value");
              } else {
                  System.out.println("代码2:" + "不存在这个value");
              }
      
              // 记录结束时间
              long endTime2 = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime2 = (endTime2 - startTime2) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("代码执行时间2: " + executionTime2 + " 毫秒");
      
          }
      

      image-20231105180819204

      可以看到,其实对于时间来说,61毫秒和66毫秒可以说时间非常短了,不愧是redis,即使数据量很大,但是查询一个value是否在比较大的set的效率是非常短的.

    • 往一个key中添加一个value,或者删除一个value--->(对应一个点赞,和取消点赞)

          @Test
          public void addAndRemoveElementFromBigKey() {
              String key = "userId:114514:publication_id:738836";
              String value1 = "10000000";
              String value2 = "200000";
      
              // 记录开始时间
              long startTime = System.nanoTime();
      
              boolean cacheSet1 = RedisUtils.addToCacheSet(key, value1);
      
              // 记录结束时间
              long endTime = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime = (endTime - startTime) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("添加一个元素的执行时间: " + executionTime + " 毫秒");
      
              // 记录开始时间
              long startTime2 = System.nanoTime();
      
              boolean cacheSet2 = RedisUtils.removeFromCacheSet(key, value2);
      
              // 记录结束时间
              long endTime2 = System.nanoTime();
      
              // 计算执行时间(以毫秒为单位)
              long executionTime2 = (endTime2 - startTime2) / 1_000_000; // 将纳秒转换为毫秒
      
              System.out.println("删除一个元素的代码执行时间: " + executionTime2 + " 毫秒");
      
          }
      

      image-20231105182159692

      但从时间来讲,只有一个字:快

    • 查询占用的内存的空间

      MEMORY USAGE  userId:114514:publication_id:738836
      

      image-20231105182354488

​ 其实可以看到,大概是占用66mb,如果用户的id为雪花算法的id,那可能占用的内存100mb

以上来说,主要还是一个bigkey的问题,如果点赞的数量过大,占用的内存过大,宝贵的内存不应该给这种业务.

  1. 自然而然,我们想到用非关系型数据库,但是不要是基于内存的,我想到的是用MongoDB的方案

    我们可以往MongoDB中插入一条这样的数据:

    db.collectionName.insertOne({
      "id": "yourIdValue",
      "userId": yourUserIdValue,
      "type": yourTypeValue,
      "likedItemId": yourLikedItemIdValue,
      "createTime": new Date("yourCreateTimeValue")
    });
    
    

    id 主键id,userId为用户的ID,type为文章或者动态或者其他的类型,likedItemId为文章或者动态或者其他的类型的主键ID,createTime为点赞时间

    在MongoDB中,可以使用createIndex方法来创建唯一索引。为userId,typelikedItemId字段创建一个唯一索引。

    db.collectionName.createIndex(
      { "userId": 1, "type": 1, "likedItemId": 1 },
      { unique: true, name: "unique_index_name" }
    );
    

    详细解释:

    • collectionName:集合名称。
    • unique_index_name:你想要给索引起的名字,可以根据你的需求替换为其他名称。

    这个命令将在collectionName集合上创建一个名为unique_index_name的唯一索引,涵盖了userIdtypelikedItemId字段。 1表示升序,如果需要降序索引,可以使用-1unique: true选项确保索引是唯一的。

    执行这个命令后,如果有重复的组合出现在这三个字段上,MongoDB将会阻止插入并抛出错误。

    即如果里面有记录为已经点过赞,点赞就是往里面加记录,取消点赞就是删除记录

    详细代码如下:

    @Service
    public class LikeServiceImpl implements LikeService {
        @Autowired
        private MongoTemplate mongoTemplate;
    
        @Autowired
        private PublicationService publicationService;
    
        /**
         * 为动态或者文章点赞
         *
         * @param publicationId 动态或者文章的ID
         * @param userId        用户的ID
         * @param type          类型,区分是文章还是动态
         * @return 点赞总数
         */
        @Override
        public Integer likePublication(Long publicationId, Long userId, Integer type) {
            // 构建查询条件
            Criteria criteria = Criteria.where("userId").is(userId)
                    .and("type").is(type)
                    .and("likedItemId").is(publicationId);
            // 创建查询对象并应用查询条件
            Query query = new Query(criteria);
            boolean isExists = mongoTemplate.exists(query, PublicationLike.class);
    
            if (isExists) {
                Asserts.fail("重复点赞");
            }
            //将点赞记录保存到mongodb
            PublicationLike publicationLike = new PublicationLike();
            publicationLike.setType(type);
            publicationLike.setCreateTime(DateUtil.date());
            publicationLike.setLikedItemId(publicationId);
            publicationLike.setUserId(userId);
            PublicationLike savedLike = mongoTemplate.save(publicationLike);
            //点赞数统计
    
            String redisLikeCountKey = String.format(RedisConstant.PUBLICATION_LIKE_COUNT, publicationId, userId, type);
            Long likeCount = RedisUtils.getAtomicValueWithDefault(redisLikeCountKey);
            //如果没有缓存过点赞数,则查询数据库
            if (likeCount.equals(-1L)) {
                Publication publication = publicationService.getById(publicationId);
                RedisUtils.setAtomicValue(redisLikeCountKey, publication.getLikeCount());
                return publication.getLikeCount();
            } else {
                //返回点赞数+1
                return Math.toIntExact(RedisUtils.incrAtomicValue(redisLikeCountKey));
            }
    
    
        }
    
        @Override
        public Integer unlikePublication(Long publicationId, Long userId, Integer type) {
            // 构建查询条件
            Criteria criteria = Criteria.where("userId").is(userId)
                    .and("type").is(type)
                    .and("likedItemId").is(publicationId);
            // 创建查询对象并应用查询条件
            Query query = new Query(criteria);
            boolean isExists = mongoTemplate.exists(query, PublicationLike.class);
    
            if (!isExists) {
                Asserts.fail("未点赞过该内容,无法取消点赞");
            }
    
            // 从MongoDB中删除点赞记录
            mongoTemplate.remove(query, PublicationLike.class);
    
            // 更新点赞数统计
            String redisLikeCountKey = String.format(RedisConstant.PUBLICATION_LIKE_COUNT, publicationId, userId, type);
            Long likeCount = RedisUtils.getAtomicValueWithDefault(redisLikeCountKey);
    
            // 如果点赞数存在于缓存中,减少点赞数并返回
            if (!likeCount.equals(-1L)) {
                long newLikeCount = RedisUtils.decrAtomicValue(redisLikeCountKey);
                return Math.toIntExact(newLikeCount);
            } else {
                // 如果点赞数没有缓存,查询数据库并更新缓存
                Publication publication = publicationService.getById(publicationId);
                if (publication != null) {
                    RedisUtils.setAtomicValue(redisLikeCountKey, publication.getLikeCount());
                    return publication.getLikeCount();
                } else {
                    Asserts.fail("无法获取点赞数");
                    return 0;
                }
            }
        }
    
    }
    
    

标签:publication,MongoDB,Redis,System,点赞,type,id,userId
From: https://www.cnblogs.com/flyleixin/p/17856020.html

相关文章

  • 01Redis的安装与配置(新手必备)
    第2章Redis的安装与配置 2.1Redis的安装2.1.1克隆并配置主机Redis在Linux上进行安装,首先有配置Linux操作系统2.1.2安装前的准备工作(1)安装gcc由于Redis是由C/C++语言编写的,而从官网下载的Redis安装包是需要编译后才可安装的,所以对其进行编译就必须要使......
  • Redis持久化
    Redis持久化RDB持久化实现类似照片记录效果的方式,就是把某一时刻的数据和状态以文件的形式写到磁盘上,也就是快照。这样一来即使故障宕机,快照文件也不会丢失,数据的可靠性也就得到了保证。这个快照文件就称为RDB文件(dump.rdb),其中,RDB就是RedisDataBase的缩写。在指定的时间间......
  • redis
        无序集合:set                          有序集合:set ......
  • 写写Redis十大类型bitmap的常用命令
    其实这些命令官方上都有,而且可读性很强,还有汉化组翻译的http://redis.cn/commands.html,不过光是练习还是容易忘,写一写博客记录一下bitmap位图,是由0和1状态表现的二进制bit数组,bitmap是由string作为底层数据结构,本质就是一个数组应用场景:用户签到,视频是否播放,是否登录过,钉钉打卡......
  • 谨防利用Redis未授权访问漏洞入侵服务器
    说明:Redis是一个开源的,由C语言编写的高性能NoSQL数据库,因其高性能、可扩展、兼容性强,被各大小互联网公司或个人作为内存型存储组件使用。但是其中有小部分公司或个人开发者,为了方便调试或忽略了安全风险,没有设置密码并直接对外开放了6379端口,那么这就是一个危险的行为。漏洞成......
  • 写写Redis十大类型zset的常用命令
    其实这些命令官方上都有,而且可读性很强,还有汉化组翻译的http://redis.cn/commands.html,不过光是练习还是容易忘,写一写博客记录一下从zset类型开始写||zset类型适合做排行榜,score排行后显示member应用场景:商品销售的排序zaddkeyscoremember[keymember]//这里和sadd不同的......
  • redisson是如何实现锁自动续期的
    Redisson是一个在Redis的基础上实现的Java驻留对象和服务,同时也是一个具有许多功能的Java驻留对象和服务库。Redisson提供了很多分布式相关的服务,其中就包括分布式锁。Redisson的锁自动续期功能主要通过以下方式实现:锁的续期:当一个线程获取了Redisson的锁之后,默认......
  • Mongodb的基本命令
    showdbsshowdatabases;use 数据库名#进入数据库,如果数据库没有会自动创建   ......
  • 生产实践:Redis与Mysql的数据强一致性方案
    公众号「架构成长指南」,专注于生产实践、云原生、分布式系统、大数据技术分享。数据库和Redis如何保持强一致性,这篇文章告诉你目的Redis和Msql来保持数据同步,并且强一致,以此来提高对应接口的响应速度,刚开始考虑是用mybatis的二级缓存,发现坑不少,于是决定自己搞要关注的问题点......
  • 推特批量点赞软件
    推特批量点赞软件:方便与风险并存 导语:随着社交媒体的迅速发展,推特成为了人们分享观点、互动交流的重要平台。为了提高推文的曝光率和影响力,一些用户开始寻找批量点赞软件来增加他们的推文点赞数量。本文将探讨推特批量点赞软件的使用、相关的方便与风险,并提供一些建议。 方......