首页 > 数据库 >Redis之分布式锁

Redis之分布式锁

时间:2023-11-17 22:34:15浏览次数:39  
标签:加锁 过期 Redis 线程 key 分布式

前言

日常开发中,秒杀下单、抢红包等等业务场景,都需要用到分布式锁。而Redis非常适合作为分布式锁使用。

  • 什么是分布式锁

  • 方案一:SETNX + EXPIRE

  • 方案二:SETNX + value值是(系统时间+过期时间)

  • 方案三:使用Lua脚本(包含SETNX + EXPIRE两条指令)

  • 方案四:SET的扩展命令(SET EX PX NX)

  • 方案五:SET EX PX NX + 校验唯一随机值,再释放锁

  • 方案六: 开源框架:Redisson

  • 方案七:多机实现的分布式锁Redlock

什么是分布式锁

分布式锁其实就是,控制分布式系统不同进程共同访问共享资源的一种锁的实现。如果不同的系统或同一个系统的不同主机之间共享了某个临界资源,往往需要互斥来防止彼此干扰,以保证一致性。

我们先来看下,一把靠谱的分布式锁应该有哪些特征:

  • 互斥性: 任意时刻,只有一个客户端能持有锁。
  • 锁超时释放:持有锁超时,可以释放,防止不必要的资源浪费,也可以防止死锁。
  • 可重入性:一个线程如果获取了锁之后,可以再次对其请求加锁。
  • 高性能和高可用:加锁和解锁需要开销尽可能低,同时也要保证高可用,避免分布式锁失效。
  • 安全性:锁只能被持有的客户端删除,不能被其他客户端删除

Redis分布式锁方案一:SETNX + EXPIRE

提到Redis的分布式锁,很多小伙伴马上就会想到setnx+ expire命令。即先用setnx来抢锁,如果抢到之后,再用expire给锁设置一个过期时间,防止锁忘记了释放。

SETNX 是SET IF NOT EXISTS的简写.日常命令格式是SETNX key value,如果 key不存在,则SETNX成功返回1,如果这个key已经存在了,则返回0。

假设某电商网站的某商品做秒杀活动,key可以设置为key_resource_id,value设置任意值,伪代码如下:

  csharp 复制代码
if(jedis.setnx(key_resource_id,lock_value) == 1){ //加锁
    expire(key_resource_id,100); //设置过期时间
    try {
        do something  //业务请求
    }catch(){
  }
  finally {
       jedis.del(key_resource_id); //释放锁
    }
}

但是这个方案中,setnxexpire两个命令分开了,不是原子操作。如果执行完setnx加锁,正要执行expire设置过期时间时,进程crash或者要重启维护了,那么这个锁就“长生不老”了,别的线程永远获取不到锁啦

 

 

Redis分布式锁方案二:SETNX + value值是(系统时间+过期时间)

为了解决方案一,发生异常锁得不到释放的场景,有小伙伴认为,可以把过期时间放到setnx的value值里面。如果加锁失败,再拿出value值校验一下即可。加锁代码如下:

  kotlin 复制代码
long expires = System.currentTimeMillis() + expireTime; //系统时间+设置的过期时间
String expiresStr = String.valueOf(expires);

// 如果当前锁不存在,返回加锁成功
if (jedis.setnx(key_resource_id, expiresStr) == 1) {
        return true;
} 
// 如果锁已经存在,获取锁的过期时间
String currentValueStr = jedis.get(key_resource_id);

// 如果获取到的过期时间,小于系统当前时间,表示已经过期
if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) {

     // 锁已过期,获取上一个锁的过期时间,并设置现在锁的过期时间(不了解redis的getSet命令的小伙伴,可以去官网看下哈)
    String oldValueStr = jedis.getSet(key_resource_id, expiresStr);
    
    if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
         // 考虑多线程并发的情况,只有一个线程的设置值和当前值相同,它才可以加锁
         return true;
    }
}
        
//其他情况,均返回加锁失败
return false;
}

这个方案的优点是,巧妙移除expire单独设置过期时间的操作,把过期时间放到setnx的value值里面来。解决了方案一发生异常,锁得不到释放的问题。但是这个方案还有别的缺点:

  • 过期时间是客户端自己生成的(System.currentTimeMillis()是当前系统的时间),必须要求分布式环境下,每个客户端的时间必须同步。
  • 如果锁过期的时候,并发多个客户端同时请求过来,都执行jedis.getSet(),最终只能有一个客户端加锁成功,但是该客户端锁的过期时间,可能被别的客户端覆盖
  • 该锁没有保存持有者的唯一标识,可能被别的客户端释放/解锁。

 

Redis分布式锁方案三:使用Lua脚本(包含SETNX + EXPIRE两条指令)

实际上,我们还可以使用Lua脚本来保证原子性(包含setnx和expire两条指令),lua脚本如下:

  vbnet 复制代码
if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then
   redis.call('expire',KEYS[1],ARGV[2])
else
   return 0
end;

加锁代码如下:

  ini 复制代码
 String lua_scripts = "if redis.call('setnx',KEYS[1],ARGV[1]) == 1 then" +
            " redis.call('expire',KEYS[1],ARGV[2]) return 1 else return 0 end";   
Object result = jedis.eval(lua_scripts, Collections.singletonList(key_resource_id), Collections.singletonList(values));
//判断是否成功
return result.equals(1L);

这个方案还是有缺点的哦,至于哪些缺点,你先思考一下。也可以想下。跟方案二对比,哪个更好?

 

Redis分布式锁方案方案四:SET的扩展命令(SET EX PX NX)

除了使用,使用Lua脚本,保证SETNX + EXPIRE两条指令的原子性,我们还可以巧用Redis的SET指令扩展参数!(SET key value[EX seconds][PX milliseconds][NX|XX]),它也是原子性的!

SET key value[EX seconds][PX milliseconds][NX|XX]

  • NX :表示key不存在的时候,才能set成功,也即保证只有第一个客户端请求才能获得锁,而其他客户端请求只能等其释放锁,才能获取。
  • EX seconds :设定key的过期时间,时间单位是秒。
  • PX milliseconds: 设定key的过期时间,单位为毫秒
  • XX: 仅当key存在时设置值

伪代码demo如下:

  csharp 复制代码
if(jedis.set(key_resource_id, lock_value, "NX", "EX", 100s) == 1){ //加锁
    try {
        do something  //业务处理
    }catch(){
  }
  finally {
       jedis.del(key_resource_id); //释放锁
    }
}

但是呢,这个方案还是可能存在问题:

  • 问题一:锁过期释放了,业务还没执行完。假设线程a获取锁成功,一直在执行临界区的代码。但是100s过去后,它还没执行完。但是,这时候锁已经过期了,此时线程b又请求过来。显然线程b就可以获得锁成功,也开始执行临界区的代码。那么问题就来了,临界区的业务代码都不是严格串行执行的啦。
  • 问题二:锁被别的线程误删。假设线程a执行完后,去释放锁。但是它不知道当前的锁可能是线程b持有的(线程a去释放锁时,有可能过期时间已经到了,此时线程b进来占有了锁)。那线程a就把线程b的锁释放掉了,但是线程b临界区业务代码可能都还没执行完呢。

 

方案五:SET EX PX NX + 校验唯一随机值,再删除

既然锁可能被别的线程误删,那我们给value值设置一个标记当前线程唯一的随机数,在删除的时候,校验一下,不就OK了嘛。伪代码如下:

  csharp 复制代码
if(jedis.set(key_resource_id, uni_request_id, "NX", "EX", 100s) == 1){ //加锁
    try {
        do something  //业务处理
    }catch(){
  }
  finally {
       //判断是不是当前线程加的锁,是才释放
       if (uni_request_id.equals(jedis.get(key_resource_id))) {
        jedis.del(lockKey); //释放锁
        }
    }
}

在这里,判断是不是当前线程加的锁释放锁不是一个原子操作。如果调用jedis.del()释放锁的时候,可能这把锁已经不属于当前客户端,会解除他人加的锁。

为了更严谨,一般也是用lua脚本代替。lua脚本如下:

  vbnet 复制代码
if redis.call('get',KEYS[1]) == ARGV[1] then 
   return redis.call('del',KEYS[1]) 
else
   return 0
end;

 

Redis分布式锁方案六:Redisson框架

方案五还是可能存在锁过期释放,业务没执行完的问题。有些小伙伴认为,稍微把锁过期时间设置长一些就可以啦。其实我们设想一下,是否可以给获得锁的线程,开启一个定时守护线程,每隔一段时间检查锁是否还存在,存在则对锁的过期时间延长,防止锁过期提前释放。

当前开源框架Redisson解决了这个问题。我们一起来看下Redisson底层原理图吧:

只要线程一加锁成功,就会启动一个watch dog看门狗,它是一个后台线程,会每隔10秒检查一下,如果线程1还持有锁,那么就会不断的延长锁key的生存时间。因此,Redisson就是使用Redisson解决了锁过期释放,业务没执行完问题。

 

Redis分布式锁方案七:多机实现的分布式锁Redlock+Redisson

前面六种方案都只是基于单机版的讨论,还不是很完美。其实Redis一般都是集群部署的:

如果线程一在Redis的master节点上拿到了锁,但是加锁的key还没同步到slave节点。恰好这时,master节点发生故障,一个slave节点就会升级为master节点。线程二就可以获取同个key的锁啦,但线程一也已经拿到锁了,锁的安全性就没了。

为了解决这个问题,Redis作者 antirez提出一种高级的分布式锁算法:Redlock。Redlock核心思想是这样的:

搞多个Redis master部署,以保证它们不会同时宕掉。并且这些master节点是完全相互独立的,相互之间不存在数据同步。同时,需要确保在这多个master实例上,是与在Redis单实例,使用相同方法来获取和释放锁。

我们假设当前有5个Redis master节点,在5台服务器上面运行这些Redis实例。

RedLock的实现步骤:如下

  • 1.获取当前时间,以毫秒为单位。
  • 2.按顺序向5个master节点请求加锁。客户端设置网络连接和响应超时时间,并且超时时间要小于锁的失效时间。(假设锁自动失效时间为10秒,则超时时间一般在5-50毫秒之间,我们就假设超时时间是50ms吧)。如果超时,跳过该master节点,尽快去尝试下一个master节点。
  • 3.客户端使用当前时间减去开始获取锁时间(即步骤1记录的时间),得到获取锁使用的时间。当且仅当超过一半(N/2+1,这里是5/2+1=3个节点)的Redis master节点都获得锁,并且使用的时间小于锁失效时间时,锁才算获取成功。(如上图,10s> 30ms+40ms+50ms+4m0s+50ms)
  • 如果取到了锁,key的真正有效时间就变啦,需要减去获取锁所使用的时间。
  • 如果获取锁失败(没有在至少N/2+1个master实例取到锁,有或者获取锁时间已经超过了有效时间),客户端要在所有的master节点上解锁(即便有些master节点根本就没有加锁成功,也需要解锁,以防止有些漏网之鱼)。

简化下步骤就是:

  • 按顺序向5个master节点请求加锁
  • 根据设置的超时时间来判断,是不是要跳过该master节点。
  • 如果大于等于三个节点加锁成功,并且使用的时间小于锁的有效期,即可认定加锁成功啦。
  • 如果获取锁失败,解锁!

Redisson实现了redLock版本的锁,有兴趣的小伙伴,可以去了解一下哈~


 

标签:加锁,过期,Redis,线程,key,分布式
From: https://www.cnblogs.com/xingxia/p/redis_distribute_lock.html

相关文章

  • 一、Redis安装配置及相关指令
    一、Redis概述Redis开源遵循BSD基于内存数据存储被用于作为数据库缓存消息中间件总结:redis是一个内存型的非关系型数据库 redis特点Redis是一个高性能key/value内存型数据库在redis中,所有的数据形式都是以键值对的方式来存储的Redis支持丰富的数据类型s......
  • 分布式核心
    1.CAP理论cap理论是分布式系统的理论基石Consistency(一致性):“allnodesseethesamedataatthesametime”,即更新操作成功并返回客户端后,所有节点在同一时间的数据完全一致,这就是分布式的一致性。一致性的问题在并发系统中不可避免,对于客户端来说,一致性指的是并发访......
  • Hadoop学习(一) 搭建伪分布式集群
    文章结构1.准备工作1.1配置IP1.2关闭防火墙1.3修改主机名并与IP绑定1.4创建新用户1.5配置免密匙 2.安装并配置Hadoop伪分布式集群2.1安装Java2.2安装配置Hadoop伪分布式集群 1.准备工作1.1配置IP首先进入该路......
  • 【虹科干货】Oracle与Redis Enterprise协同,作为企业缓存解决方案
    单独使用Oracle作为企业缓存数据库时,会出现哪些问题呢?使用RedisEnterprise与Oracle共同用作企业级缓存或副本数据库,会出现哪些喜人的提升呢?Orcle配合使用RedisEnterprise,为什么能够打造更快、更高效、更具成本效益的现代企业数据库呢?  文章速览: Oracle为什么需要Redis......
  • 【虹科干货】Oracle与Redis Enterprise协同,作为企业缓存解决方案
    单独使用Oracle作为企业缓存数据库时,会出现哪些问题呢?使用RedisEnterprise与Oracle共同用作企业级缓存或副本数据库,会出现哪些喜人的提升呢?Orcle配合使用RedisEnterprise,为什么能够打造更快、更高效、更具成本效益的现代企业数据库呢?文章速览:Oracle为什么需要RedisEnterpriseRed......
  • Apache Kylin4 分布式的分析型数据仓库
    https://kylin.apache.org/cn/docs/index.htmlApacheKylin4概述欢迎来到ApacheKylin™AnalyticalDataWarehouseforBigDataApacheKylin™是一个开源的、分布式的分析型数据仓库,提供Hadoop之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,最初由eBayInc......
  • redis缓存一致 做延时双删
    提出现象做数据库更新A redis缓存刷新A做据库更新Bredis缓存更新B如果正常执行1,2,3,4步骤,一切正常。但是在高并发的情况下,执行步骤是1,3,4,2,导致数据库和缓存不一致。提出解决方法,做延时双删。//操作数据库的方法@PostMapping("/employee/update")@Cl......
  • 为什么要用Redis做缓存?为什么用Redis而不用map和Guava?
    从请求数据的性能和并发角度来回答这两个问题,假如用户是第一次访问数据库中的某些数据,第一次访问当然会比较慢,因为是直接从硬盘上读取的,数据通过磁盘IO从磁盘上来到内存中,然后通过网络通信传输给用户,假如我们在第一次读取数据时,将数据存储到内存中,然后第二次以后都从内存中直接读......
  • 【docker】docker中装Redis集群
    一、搭建步骤1、启动容器#关闭防火墙systemctlstartdocker2、新建6个docker容器redis实例dockerrun-d--nameredis-node-1--nethost--privileged=true-v/data/redis/share/redis-node-1:/dataredis--cluster-enabledyes--appendonlyyes--port6381do......
  • SignalR 分布式部署
    分布式部署意味着有多台SignalR服务器,一台服务器有多个客户端连接。SignalR要求对于某一个特定连接的所有HTTP请求都需要被一个相同服务进程处理,当SignalR运行在一个服务场时(多个服务器),则必须使用“粘性会话”(服务器开启)或者”跳过协商“(用websocket)问题:某一个客户端给服务器......