首页 > 数据库 >MySQL面试问题集锦

MySQL面试问题集锦

时间:2023-09-10 11:22:23浏览次数:55  
标签:存储 索引 数据库 事务 查询 面试 集锦 MySQL 数据

1、请简要说明一条SQL语句的执行过程。

参照:深度好文:MySQL架构 (baidu.com)

一文读懂MySQL查询语句的执行过程 (taodudu.cc)

MySQL Server架构自顶向下大致可以分网络连接层、服务层、存储引擎层和系统文件层。

2、mysql有关权限的表都有哪几个

MySQL服务器通过权限表来控制用户对数据库的访问,权限表存放在mysql数据库里,由mysql_install_db脚本初始化。这些权限表分别user,db,table_priv,columns_priv和host。下面分别介绍一下这些表的结构和内容:

  • user权限表:记录允许连接到服务器的用户帐号信息,里面的权限是全局级的。
  • db权限表:记录各个帐号在各个数据库上的操作权限。
  • table_priv权限表:记录数据表级的操作权限。
  • columns_priv权限表:记录数据列级的操作权限。
  • host权限表:配合db权限表对给定主机上数据库级操作权限作更细致的控制。这个权限表不受GRANT和REVOKE语句的影响。

3、 MySQL的binlog有有几种录入格式?分别有什么区别?

有三种格式,statement,row和mixed。

  • statement模式下,每一条会修改数据的sql都会记录在binlog中。不需要记录每一行的变化,减少了binlog日志量,节约了IO,提高性能。由于sql的执行是有上下文的,因此在保存的时候需要保存相关的信息,同时还有一些使用了函数之类的语句无法被记录复制。
  • row级别下,不记录sql语句上下文相关信息,仅保存哪条记录被修改。记录单元为每一行的改动,基本是可以全部记下来但是由于很多操作,会导致大量行的改动(比如alter table),因此这种模式的文件保存的信息太多,日志量太大。
  • mixed,一种折中的方案,普通操作使用statement记录,当无法使用statement的时候使用row。

此外,新版的MySQL中对row级别也做了一些优化,当表结构发生变化的时候,会记录语句而不是逐行记录。

4、mysql有哪些数据类型有哪些?

  • 整数类型,包括TINYINT、SMALLINT、MEDIUMINT、INT、BIGINT,分别表示1字节、2字节、3字节、4字节、8字节整数。任何整数类型都可以加上UNSIGNED属性,表示数据是无符号的,即非负整数。

长度:整数类型可以被指定长度,例如:INT(11)表示长度为11的INT类型。长度在大多数场景是没有意义的,它不会限制值的合法范围,只会影响显示字符的个数,而且需要和UNSIGNED ZEROFILL属性配合使用才有意义。
例子,假定类型设定为INT(5),属性为UNSIGNED ZEROFILL,如果用户插入的数据为12的话,那么数据库实际存储数据为00012。

  • 实数类型,包括FLOAT、DOUBLE、DECIMAL。

DECIMAL可以用于存储比BIGINT还大的整型,能存储精确的小数。
而FLOAT和DOUBLE是有取值范围的,并支持使用标准的浮点进行近似计算。
计算时FLOAT和DOUBLE相比DECIMAL效率更高一些,DECIMAL你可以理解成是用字符串进行处理。

  • 字符串类型,包括VARCHAR、CHAR、TEXT、BLOB

VARCHAR用于存储可变长字符串,它比定长类型更节省空间。
VARCHAR使用额外1或2个字节存储字符串长度。列长度小于255字节时,使用1字节表示,否则使用2字节表示。
VARCHAR存储的内容超出设置的长度时,内容会被截断。
CHAR是定长的,根据定义的字符串长度分配足够的空间。
CHAR会根据需要使用空格进行填充方便比较。
CHAR适合存储很短的字符串,或者所有值都接近同一个长度。
CHAR存储的内容超出设置的长度时,内容同样会被截断。
使用策略:
对于经常变更的数据来说,CHAR比VARCHAR更好,因为CHAR不容易产生碎片。
对于非常短的列,CHAR比VARCHAR在存储空间上更有效率。
使用时要注意只分配需要的空间,更长的列排序时会消耗更多内存。
尽量避免使用TEXT/BLOB类型,查询时会使用临时表,导致严重的性能开销。

  • 枚举类型(ENUM),把不重复的数据存储为一个预定义的集合。
    有时可以使用ENUM代替常用的字符串类型。
    ENUM存储非常紧凑,会把列表值压缩到一个或两个字节。
    ENUM在内部存储时,其实存的是整数。
    尽量避免使用数字作为ENUM枚举的常量,因为容易混乱。
    排序是按照内部存储的整数
  • 日期和时间类型,尽量使用timestamp,空间效率高于datetime,
    用整数保存时间戳通常不方便处理。
    如果需要存储微妙,可以使用bigint存储。
    看到这里,这道真题是不是就比较容易回答了。

5、CHAR 和 VARCHAR的区别?

CHAR 是固定长度的字符类型,VARCHAR 则是可变长度的字符类型,下面讨论基于在 MySQL5.0 以上版本中。

共同点

CHAR(M) 和 VARCHAR(M) 都表示该列能存储 M 个字符,注意不是字节!!

CHAR类型特点

  • CHAR 最多可以存储 255 个字符 (注意不是字节),字符有不同的编码集,比如 UTF8 编码 (3字节)、GBK 编码 (2字节) 等。
  • 对于 CHAR(M) 如果实际存储的数据长度小于M,则 MySQL 会自动会在它的右边用空格字符补足,但是在检索操作中那些填补出来的空格字符会被去掉。

VARCHAR类型特点

  • VARCHAR 的最大长度为 65535 个字节。
  • VARCHAR 存储的是实际的字符串加1或2个字节用来记录字符串实际长度,字符串长度小于255字节用1字节记录,超过255就需要2字节记录。[^12 ]

6、int(10) 和 bigint(10)能存储的数据大小一样吗?

不一样,具体原因如下:

  • int 能存储四字节有符号整数。
  • bigint 能存储八字节有符号整数。

所以能存储的数据大小不一样,其中的数字 10 代表的只是数据的显示宽度。[^13]

  • 显示宽度指明Mysql最大可能显示的数字个数,数值的位数小于指定的宽度时数字左边会用空格填充,空格不容易看出。
  • 如果插入了大于显示宽度的值,只要该值不超过该类型的取值范围,数值依然可以插入且能够显示出来。
  • 建表的时候指定 zerofill 选项,则不足显示宽度的部分用 0 填充,如果是 1 会显示成 0000000001
  • 如果没指定显示宽度, bigint 默认宽度是 20 ,int默认宽度 11。

 7、MySQL存储引擎类型有哪些?

  • Innodb引擎:Innodb引擎提供了对数据库ACID事务的支持。并且还提供了行级锁和外键的约束。它的设计的目标就是处理大数据容量的数据库系统。
  • MyIASM引擎(早期Mysql的默认引擎):不提供事务的支持,也不支持行级锁和外键。
  • MEMORY引擎:所有的数据都在内存中,数据的处理速度快,但是安全性不高。

常用的存储引擎有 InnoDB 存储引擎和 MyISAM 存储引擎,InnoDB 是 MySQL 的默认事务引擎。

8、InnoDB存储引擎应用场景是什么?

InnoDB 是 MySQL的默认「事务引擎」,被设置用来处理大量短期(short-lived)事务,短期事务大部分情况是正常提交的,很少会回滚。

9、InnoDB 引擎的四大特性是什么?

插入缓冲(Insert buffer)

Insert Buffer 用于非聚集索引的插入和更新操作。先判断插入的非聚集索引是否在缓存池中,如果在则直接插入,否则插入到 Insert Buffer 对象里。再以一定的频率进行 Insert Buffer 和辅助索引叶子节点的 merge 操作,将多次插入合并到一个操作中,提高对非聚集索引的插入性能。

二次写 (Double write)

Double Write由两部分组成,一部分是内存中的double write buffer,大小为2MB,另一部分是物理磁盘上共享表空间连续的128个页,大小也为 2MB。在对缓冲池的脏页进行刷新时,并不直接写磁盘,而是通过 memcpy 函数将脏页先复制到内存中的该区域,之后通过doublewrite buffer再分两次,每次1MB顺序地写入共享表空间的物理磁盘上,然后马上调用fsync函数,同步磁盘,避免操作系统缓冲写带来的问题。

自适应哈希索引 (Adaptive Hash Index)

InnoDB会根据访问的频率和模式,为热点页建立哈希索引,来提高查询效率。索引通过缓存池的 B+ 树页构造而来,因此建立速度很快,InnoDB存储引擎会监控对表上各个索引页的查询,如果观察到建立哈希索引可以带来速度上的提升,则建立哈希索引,所以叫做自适应哈希索引。

缓存池

为了提高数据库的性能,引入缓存池的概念,通过参数 innodb_buffer_pool_size 可以设置缓存池的大小,参数 innodb_buffer_pool_instances 可以设置缓存池的实例个数。缓存池主要用于存储以下内容:

缓冲池中缓存的数据页类型有:索引页、数据页、undo页、插入缓冲 (insert buffer)、自适应哈希索引(adaptive hash index)、InnoDB存储的锁信息 (lock info)和数据字典信息 (data dictionary)。

10、MyISAM存储引擎应用场景有哪些?

MyISAM 是 MySQL 5.1 及之前的版本的默认的存储引擎。MyISAM 提供了大量的特性,包括全文索引、压缩、空间函数(GIS)等,但MyISAM 不「支持事务和行级锁」,对于只读数据,或者表比较小、可以容忍修复操作,依然可以使用它。

11、MyISAM 与 InnoDB 存储引擎 5 大区别

  • InnoDB支持事物,而MyISAM不支持事物
  • InnoDB支持行级锁,而MyISAM支持表级锁
  • InnoDB支持MVCC, 而MyISAM不支持
  • InnoDB支持外键,而MyISAM不支持
  • InnoDB不支持全文索引,而MyISAM支持

MVCC MVCC (Multiversion Concurrency Control) 中文全程叫多版本并发控制,是现代数据库(包括 MySQL、Oracle、PostgreSQL 等)引擎实现中常用的处理读写冲突

一张表简单罗列两种引擎的主要区别,如下图:

12、怎样进行存储引擎选择

如果没有特别的需求,使用默认的Innodb即可。

MyISAM:以读写插入为主的应用程序,比如博客系统、新闻门户网站。

Innodb:更新(删除)操作频率也高,或者要保证数据的完整性;并发量高,支持事务和外键。比如OA自动化办公系统。

13、数据库三大范式是什么

第一范式:每个列都不可以再拆分。

第二范式:在第一范式的基础上,非主键列完全依赖于主键,而不能是依赖于主键的一部分。

第三范式:在第二范式的基础上,非主键列只依赖于主键,不依赖于其他非主键。

在设计数据库结构的时候,要尽量遵守三范式,如果不遵守,必须有足够的理由。比如性能。事实上我们经常会为了性能而妥协数据库的设计。

但是,没有冗余的数据库未必是最好的数据库,有时为了提高运行效率,就必须降低范式标准,适当保留冗余数据,具体做法是:在概念数据模型设计时遵守第三范式,降低范式标准的工作放到物理数据模型设计时考虑,降低范式就是增加字段,允许冗余。

14、SQL 语句有哪些分类?

  1. DDL:数据定义语言(create alter drop)
  2. DML:数据操作语句(insert update delete)
  3. DTL:数据事务语句(commit collback savapoint)
  4. DCL:数据控制语句(grant revoke)

 

15、数据库删除操作中的 delete、drop、 truncate 区别在哪?

  • 当不再需要该表时可以用 drop 来删除表;
  • 当仍要保留该表,但要删除所有记录时, 用 truncate来删除表中记录。
  • 当要删除部分记录时(一般来说有 WHERE 子句约束) 用 delete来删除表中部分记录。

16、什么是MySql视图?

视图是虚拟表,并不储存数据,只包含定义时的语句的动态数据。

 

17、使用 MySQL 视图有何优点?

  1. 操作简单方便。视图用户完全不需要关心视图对应的表的结构、关联条件和筛选条件,对用户来说已经是过滤好的复合条件的结果集。
  2. 数据更加安全。视图用户只能访问视图中的结果集,通过视图可以把对表的访问权限限制在某些行和列上面。
  3. 数据隔离。屏蔽了源表结构变化对用户带来的影响,源表结构变化视图结构不变。

18、什么是索引?

索引是一种特殊的文件(InnoDB数据表上的索引是表空间的一个组成部分),它们包含着对数据表里所有记录的引用指针。

索引是一种数据结构。数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。

更通俗的说,索引就相当于目录。为了方便查找书中的内容,通过对内容建立索引形成目录。索引是一个文件,它是要占据物理空间的。

19、索引有哪些优缺点?

索引的优点

  • 可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
  • 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

索引的缺点

  • 时间方面:创建索引和维护索引要耗费时间,具体地,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,会降低增/改/删的执行效率;
  • 空间方面:索引需要占物理空间。

 20、索引的数据结构(b树,hash)

索引的数据结构和具体存储引擎的实现有关,在MySQL中使用较多的索引有Hash索引,B+树索引等,而我们经常使用的InnoDB存储引擎的默认索引实现为:B+树索引。对于哈希索引来说,底层的数据结构就是哈希表,因此在绝大多数需求为单条记录查询的时候,可以选择哈希索引,查询性能最快;其余大部分场景,建议选择BTree索引。

mysql通过存储引擎取数据,基本上90%的人用的就是InnoDB了,按照实现方式分,InnoDB的索引类型目前只有两种:BTREE(B树)索引和HASH索引。B树索引是Mysql数据库中使用最频繁的索引类型,基本所有存储引擎都支持BTree索引。通常我们说的索引不出意外指的就是(B树)索引(实际是用B+树实现的,因为在查看表索引时,mysql一律打印BTREE,所以简称为B树索引)

索引算法有 BTree算法和Hash算法

BTree算法

BTree是最常用的mysql数据库索引算法,也是mysql默认的算法。因为它不仅可以被用在=,>,>=,<,<=和between这些比较操作符上,而且还可以用于like操作符,只要它的查询条件是一个不以通配符开头的常量, 例如:

-- 只要它的查询条件是一个不以通配符开头的常量
select * from user where name like 'jack%';
-- 如果一通配符开头,或者没有使用常量,则不会使用索引,例如:
select * from user where name like '%jack';

Hash算法

Hash Hash索引只能用于对等比较,例如=,<=>(相当于=)操作符。由于是一次定位数据,不像BTree索引需要从根节点到枝节点,最后才能访问到页节点这样多次IO访问,所以检索效率远高于BTree索引。

21、索引设计的原则?

  1. 适合索引的列是出现在where子句中的列,或者连接子句中指定的列
  2. 基数较小的类,索引效果较差,没有必要在此列建立索引
  3. 使用短索引,如果对长字符串列进行索引,应该指定一个前缀长度,这样能够节省大量索引空间
  4. 不要过度索引。索引需要额外的磁盘空间,并降低写操作的性能。在修改表内容的时候,索引会进行更新甚至重构,索引列越多,这个时间就会越长。所以只保持需要的索引有利于查询即可。

22、创建索引的原则(重中之重)

索引虽好,但也不是无限制的使用,最好符合一下几个原则

1) 最左前缀匹配原则,组合索引非常重要的原则,mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

2)较频繁作为查询条件的字段才去创建索引

3)更新频繁字段不适合创建索引

4)若是不能有效区分数据的列不适合做索引列(如性别,男女未知,最多也就三种,区分度实在太低)

5)尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。

6)定义有外键的数据列一定要建立索引。

7)对于那些查询中很少涉及的列,重复值比较多的列不要建立索引。

8)对于定义为text、image和bit的数据类型的列不要建立索引。

23、Hash索引和B+树所有有什么区别或者说优劣呢?

首先要知道Hash索引和B+树索引的底层实现原理:

hash索引底层就是hash表,进行查找时,调用一次hash函数就可以获取到相应的键值,之后进行回表查询获得实际数据。B+树底层实现是多路平衡查找树。对于每一次的查询都是从根节点出发,查找到叶子节点方可以获得所查键值,然后根据查询判断是否需要回表查询数据。

那么可以看出他们有以下的不同:

  • hash索引进行等值查询更快(一般情况下),但是却无法进行范围查询。

因为在hash索引中经过hash函数建立索引之后,索引的顺序与原顺序无法保持一致,不能支持范围查询。而B+树的的所有节点皆遵循(左节点小于父节点,右节点大于父节点,多叉树也类似),天然支持范围。

  • hash索引不支持使用索引进行排序,原理同上。
  • hash索引不支持模糊查询以及多列索引的最左前缀匹配。原理也是因为hash函数的不可预测。AAAA和AAAAB的索引没有相关性。
  • hash索引任何时候都避免不了回表查询数据,而B+树在符合某些条件(聚簇索引,覆盖索引等)的时候可以只通过索引完成查询。
  • hash索引虽然在等值查询上较快,但是不稳定。性能不可预测,当某个键值存在大量重复的时候,发生hash碰撞,此时效率可能极差。而B+树的查询效率比较稳定,对于所有的查询都是从根节点到叶子节点,且树的高度较低。

因此,在大多数情况下,直接选择B+树索引可以获得稳定且较好的查询速度。而不需要使用hash索引。

24、数据库为什么使用B+树而不是B树

  • B树只适合随机检索,而B+树同时支持随机检索和顺序检索;
  • B+树空间利用率更高,可减少I/O次数,磁盘读写代价更低。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘I/O消耗。B+树的内部结点并没有指向关键字具体信息的指针,只是作为索引使用,其内部结点比B树小,盘块能容纳的结点中关键字数量更多,一次性读入内存中可以查找的关键字也就越多,相对的,IO读写次数也就降低了。而IO读写次数是影响索引检索效率的最大因素;
  • B+树的查询效率更加稳定。B树搜索有可能会在非叶子结点结束,越靠近根节点的记录查找时间越短,只要找到关键字即可确定记录的存在,其性能等价于在关键字全集内做一次二分查找。而在B+树中,顺序检索比较明显,随机检索时,任何关键字的查找都必须走一条从根节点到叶节点的路,所有关键字的查找路径长度相同,导致每一个关键字的查询效率相当。
  • B-树在提高了磁盘IO性能的同时并没有解决元素遍历的效率低下的问题。B+树的叶子节点使用指针顺序连接在一起,只要遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作。
  • 增删文件(节点)时,效率更高。因为B+树的叶子节点包含所有关键字,并以有序的链表结构存储,这样可很好提高增删效率。

25、B+树在满足聚簇索引和覆盖索引的时候不需要回表查询数据

在B+树的索引中,叶子节点可能存储了当前的key值,也可能存储了当前的key值以及整行的数据,这就是聚簇索引和非聚簇索引。在InnoDB中,只有主键索引是聚簇索引,如果没有主键,则挑选一个唯一键建立聚簇索引。如果没有唯一键,则隐式的生成一个键来建立聚簇索引。

当查询使用聚簇索引时,在对应的叶子节点,可以获取到整行数据,因此不用再次进行回表查询。

26. 什么是聚簇索引?何时使用聚簇索引与非聚簇索引

  • 聚簇索引:将数据存储与索引放到了一块,找到索引也就找到了数据
  • 非聚簇索引:将数据存储于索引分开结构,索引结构的叶子节点指向了数据的对应行,myisam通过key_buffer把索引先缓存到内存中,当需要访问数据时(通过索引访问数据),在内存中直接搜索索引,然后通过索引找到磁盘相应数据,这也就是为什么索引不在key buffer命中时,速度慢的原因

澄清一个概念:innodb中,在聚簇索引之上创建的索引称之为辅助索引,辅助索引访问数据总是需要二次查找,非聚簇索引都是辅助索引,像复合索引、前缀索引、唯一索引,辅助索引叶子节点存储的不再是行的物理位置,而是主键值

何时使用聚簇索引与非聚簇索引

27. 非聚簇索引一定会回表查询吗?

不一定,这涉及到查询语句所要求的字段是否全部命中了索引,如果全部命中了索引,那么就不必再进行回表查询。

举个简单的例子,假设我们在员工表的年龄上建立了索引,那么当进行select age from employee where age < 20的查询时,在索引的叶子节点上,已经包含了age信息,不会再次进行回表查询。

28. 联合索引是什么?为什么需要注意联合索引中的顺序?

MySQL可以使用多个字段同时建立一个索引,叫做联合索引。在联合索引中,如果想要命中索引,需要按照建立索引时的字段顺序挨个使用,否则无法命中索引。

具体原因为:

MySQL使用索引时需要索引有序,假设现在建立了"name,age,school"的联合索引,那么索引的排序为: 先按照name排序,如果name相同,则按照age排序,如果age的值也相等,则按照school进行排序。

当进行查询时,此时索引仅仅按照name严格有序,因此必须首先使用name字段进行等值查询,之后对于匹配到的列而言,其按照age字段严格有序,此时可以使用age字段用做索引查找,以此类推。因此在建立联合索引的时候应该注意索引列的顺序,一般情况下,将查询需求频繁或者字段选择性高的列放在前面。此外可以根据特例的查询或者表结构进行单独的调整。

29、什么是数据库事务?

事务是一个不可分割的数据库操作序列,也是数据库并发控制的基本单位,其执行的结果必须使数据库从一种一致性状态变到另一种一致性状态。事务是逻辑上的一组操作,要么都执行,要么都不执行。

事务最经典也经常被拿出来说例子就是转账了。

假如小明要给小红转账1000元,这个转账会涉及到两个关键操作就是:将小明的余额减少1000元,将小红的余额增加1000元。万一在这两个操作之间突然出现错误比如银行系统崩溃,导致小明余额减少而小红的余额没有增加,这样就不对了。事务就是保证这两个关键操作要么都成功,要么都要失败。

30. 事物的四大特性(ACID)介绍一下?

关系性数据库需要遵循ACID规则,具体内容如下:

 

  1. 原子性:事务是最小的执行单位,不允许分割。事务的原子性确保动作要么全部完成,要么完全不起作用;
  2. 一致性:执行事务前后,数据保持一致,多个事务对同一个数据读取的结果是相同的;
  3. 隔离性:并发访问数据库时,一个用户的事务不被其他事务所干扰,各并发事务之间数据库是独立的;
  4. 持久性:一个事务被提交之后。它对数据库中数据的改变是持久的,即使数据库发生故障也不应该对其有任何影响。

31. 什么是脏读?幻读?不可重复读?

  • 脏读(Drity Read):某个事务已更新一份数据,另一个事务在此时读取了同一份数据,由于某些原因,前一个RollBack了操作,则后一个事务所读取的数据就会是不正确的。
  • 不可重复读(Non-repeatable read):在一个事务的两次查询之中数据不一致,这可能是两次查询过程中间插入了一个事务更新的原有的数据。
  • 幻读(Phantom Read):在一个事务的两次查询中数据笔数不一致,例如有一个事务查询了几列(Row)数据,而另一个事务却在此时插入了新的几列数据,先前的事务在接下来的查询中,就会发现有几列数据是它先前所没有的。

32. 什么是事务的隔离级别?MySQL的默认隔离级别是什么?

为了达到事务的四大特性,数据库定义了4种不同的事务隔离级别,由低到高依次为Read uncommitted、Read committed、Repeatable read、Serializable,这四个级别可以逐个解决脏读、不可重复读、幻读这几类问题。

SQL 标准定义了四个隔离级别:

  • READ-UNCOMMITTED(读取未提交):最低的隔离级别,允许读取尚未提交的数据变更,可能会导致脏读、幻读或不可重复读。
  • READ-COMMITTED(读取已提交):允许读取并发事务已经提交的数据,可以阻止脏读,但是幻读或不可重复读仍有可能发生。
  • REPEATABLE-READ(可重复读):对同一字段的多次读取结果都是一致的,除非数据是被本身事务自己所修改,可以阻止脏读和不可重复读,但幻读仍有可能发生。
  • SERIALIZABLE(可串行化):最高的隔离级别,完全服从ACID的隔离级别。所有的事务依次逐个执行,这样事务之间就完全不可能产生干扰,也就是说,该级别可以防止脏读、不可重复读以及幻读。

这里需要注意的是:Mysql 默认采用的 REPEATABLE_READ隔离级别 Oracle 默认采用的 READ_COMMITTED隔离级别

事务隔离机制的实现基于锁机制和并发调度。其中并发调度使用的是MVVC(多版本并发控制),通过保存修改的旧版本信息来支持并发一致性读和回滚等特性。

因为隔离级别越低,事务请求的锁越少,所以大部分数据库系统的隔离级别都是READ-COMMITTED(读取提交内容):,但是你要知道的是InnoDB 存储引擎默认使用 **REPEATABLE-READ(可重读)**并不会有任何性能损失。

InnoDB 存储引擎在 分布式事务 的情况下一般会用到**SERIALIZABLE(可串行化)**隔离级别。

 

 

标签:存储,索引,数据库,事务,查询,面试,集锦,MySQL,数据
From: https://www.cnblogs.com/102x/p/17690873.html

相关文章

  • 高级Java面试:如何在事务中使用锁?
    亲爱的小伙伴们,大家好!我是小米,很高兴再次和大家见面。今天,我将和大家分享一个关于编程中的面试题:一个有@Transaction注解的方法中有锁,需要注意什么?这个问题可能在Java后端开发的面试中常常被问到,不仅考察了对事务和锁的理解,还涉及到了多线程编程的复杂性。所以,赶快跟我一起深入探讨......
  • 代码随想录算法训练营第四天| 24. 两两交换链表中的节点, 19.删除链表的倒数第N个结点
    24.两两交换链表中的节点mydemo(超时)/***Definitionforsingly-linkedlist.*structListNode{*intval;*ListNode*next;*ListNode():val(0),next(nullptr){}*ListNode(intx):val(x),next(nullptr){}*ListNode(intx,Lis......
  • Flink 1.17教程:输出算子之输出到MySQL(JDBC)
    输出到MySQL(JDBC)写入数据的MySQL的测试步骤如下。(1)添加依赖添加MySQL驱动:mysqlmysql-connector-java8.0.27官方还未提供flink-connector-jdbc的1.17.0的正式依赖,暂时从apachesnapshot仓库下载,pom文件中指定仓库路径:apache-snapshotsapachesnapshotshttps://repository.a......
  • nacos配置mysql链接
    因为是Linux安装,所以下载的是tar.gz的 下载完之后直接用的MobXtrem上传到任意文件夹中,然后用下面的命令解压到当前文件夹:tar-zxvfnacos-server-1.4.2.tar.gz然后进入到bin文件夹下面,执行单机命令启动:./startup.sh-mstandalone这个时候就已经可以访问页面域名/ip:8848/......
  • #yyds干货盘点# LeetCode程序员面试金典:用栈实现队列
    题目:请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):实现 MyQueue 类:voidpush(intx) 将元素x推到队列的末尾intpop() 从队列的开头移除并返回元素intpeek() 返回队列开头的元素booleanempty() 如果队列为空,返回 true ......
  • #yyds干货盘点# LeetCode程序员面试金典:等差数列划分
    1.简述:如果一个数列 至少有三个元素 ,并且任意两个相邻元素之差相同,则称该数列为等差数列。例如,[1,3,5,7,9]、[7,7,7,7] 和 [3,-1,-5,-9] 都是等差数列。给你一个整数数组 nums ,返回数组 nums 中所有为等差数组的 子数组 个数。子数组 是数组中的一个连续序列。 示例1......
  • 欧拉22使用rpm包安装mysql8
    欧拉系统下载链接http://mirrors.163.com/openeuler/openEuler-22.03-LTS/everything/x86_64/Packages/https://zhuanlan.zhihu.com/p/649407349安装tar命令dnf-yinstalltar解压tar包tar-xfmysql-community-8.0.33-1.x86_64.tarsetenforce0开始安装rm-rf*test*rm-rf*d......
  • navicate 连接mysql8.1
    1问题描述安装好mysql8.1,使用navicate连接,报错Clientdoesnotsupportauthenticationprotocolrequestedbyserver; 2解决1)命令行登录mysqlmysql-hlocalhost-P3306-u用户-p密码 2)执行命令修改加密规则ALTERUSER'root'@'localhost'IDENTI......
  • 掌握这些面试题和技巧,Android程序员轻松提高拿到offer的概率
    前言在竞争激烈的IT行业,程序员面试成为了每个开发者必须经历的一道关卡。无论是应聘初级岗位还是高级职位,面试都扮演着决定命运的重要角色。然而,对于很多程序员来说,面试过程充满了不确定性和挑战。下面将在面试中,总结出来的一些建议和策略分享给大家。一、了解面试流程与目标:在准备......
  • Spring - IoC相关面试题
    什么是IoC?SpringIoC有什么好处呢?-看看依赖倒置原则IoC(Inversionofcontrol)控制反转。他是一种解耦的设计思想。IoC的思想就是将原本在程序中手动创建对象的控制权,交给Spring框架来管理,从而实现具有依赖关系的对象之间的解耦(IOC容器管理对象,你只管使用即可),降低代码之间......