首页 > 数据库 >使用 Hue 玩转 Amazon EMR(SparkSQL, Phoenix) 和 Amazon Redshift

使用 Hue 玩转 Amazon EMR(SparkSQL, Phoenix) 和 Amazon Redshift

时间:2023-09-02 23:36:06浏览次数:68  
标签:Hue Phoenix hue sudo Amazon Apache

现状

Apache Hue 是一个基于 Web 的交互式 SQL 助手,通过它可以帮助大数据从业人员(数仓工程师,数据分析师等)与数据仓库进行 SQL 交互。在 Amazon EMR 集群启动时,通过勾选 Hue 进行安装。在 Hue 启用以后,将原先需要登录主节点进行 SQL 编写及提交的工作转移到 web 前端,不仅方便统一管理日常开发需求,而且保证了集群的接入安全性。另一方面 Hue 自己独特的优势可以使用 SparkSQL 进行 Spark 任务的远程提交,相比于额外为 Amazon EMR 集群配置 Hive on Spark,或者使用代码进行 Livy 远程提交这两种方式而言,大大的提升了开发和运维效率。本文也介绍了如何通过 Hue 整合 Amazon Redshift 数仓, 以及远程提交 Phoenix 任务同 HBase 交互,将 Hue 打造为数据仓库的统一 SQL 访问平台。

亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮助中国开发者对接世界最前沿技术,观点,和项目,并将中国优秀开发者或技术推荐给全球云社区。如果你还没有关注/收藏,看到这里请一定不要匆匆划过,点这里让它成为你的技术宝库!

 

方案架构总览

image.png

方案介绍

通过 Livy 提交 SparkSQL Job

执行引擎现状

首先,我们简单比对一下几种流行的执行引擎的现状:

  • 由于处理客户查询需要高磁盘 IO,Apache MapReduce 是最慢的查询执行引擎。
  • 在保持磁盘 IO 不变的情况下,Apache Tez 明显快于 Apache MapReduce。
  • Apache Spark 比没有 IO 阻塞的 Apache Tez 稍快,和Apache Tez 一样以 DAG 方式处理数据,Spark 更加通用,提供内存计算,实时流处理,机器学习等多种计算方式,适合迭代计算。

Apache Livy 简介

Apache Livy 是一项服务,可通过 REST API 与 Spark 集群轻松交互。此方案中的配置方式可将 Hue 页面编写的 SparkSQL 通过 Livy 接口提交到 EMR 集群。

EMR Hue 处理 SparkSQL 默认行为

当在 Hue 的面板上 Editor 选择 SparkSQL 并提交 SQL 任务时,我们根据 application_id((Executing on YARN cluster with App id application_1656071365605_0006))去 Resource Manager 控制台上查询到对应的 Application Type 是 Tez:

image.png

image.png

当我们打开 hue 的配置文件(/etc/hue/conf/hue.ini)看到[[[sql]]] 处配置如下图,interface 配置的是 hiveserver2 便知道了此时的 SparkSQL 走的仍是 hiveserver2,因此使用的是 Tez 引擎(EMR上的Hive执行引擎默认是Tez),这代表着并未真的使用 Spark 执行引擎在运行上述的 Query。

image.png

在 EMR Hue 中通过 Livy 提交 SparkSQL 任务

(1)修改 Hue 配置文件(/etc/hue/conf/hue.ini)中的执行引擎,并重启 Hue 服务

image.png

sudo systemctl restart hue.service
sudo systemctl status hue.service

重新提交 SparkSQL 任务后,看到该 Application 的 ApplicationType 已经为 SPARK。

image.png

生产场景中的性能调优:

上述 Application 通过 Spark 管理界面查看 Environment 细节:

image.png

看到 spark.driver.memory 和 spark.executor.memory 均设置为1G

image.png

这是因为 Hue 源码中直接将上述两个参数的值设定为1G:

https://github.com/cloudera/hue/blob/bd6324a79c2e6b6d002ddd6767b0e63883373320/desktop/libs/notebook/src/notebook/connectors/spark_shell.py

 
{
          "name": "driverMemory",
          "nice_name": _("Driver Memory"),
          "help_text": _("Amount of memory to use for the driver process in GB. (Default: 1). "),
          "type": "jvm",
          "is_yarn": False,
          "multiple": False,
          "defaultValue": '1G',
          "value": '1G',
    },
…
{
          "name": "executorMemory",
          "nice_name": _("Executor Memory"),
          "help_text": _("Amount of memory to use per executor process in GB. (Default: 1)"),
          "type": "jvm",
          "is_yarn": True,
          "multiple": False,
          "defaultValue": '1G',
          "value": '1G',
        }

如果用默认参数值容易在任务执行中触发 OOM 异常,导致任务运行失败,我们可选择通过以下方法进行调优:

cp /usr/lib/hue/desktop/libs/notebook/src/notebook/connectors/spark_shell.py /usr/lib/hue/desktop/libs/notebook/src/notebook/connectors/spark_shell.py.bak
sudo vi /usr/lib/hue/desktop/libs/notebook/src/notebook/connectors/spark_shell.py

将 ‘driverMemory’ 和 ‘executorMemory’ 的配置删除,重启 Hue 服务

sudo systemctl restart hue.service
sudo systemctl status hue.service

image.png

再次运行 SparkSQL,从 Environment 看到两个内存参数已经更新,和 /etc/spark/conf/spark-defaults.conf 内定义一致:

image.png

image.png

Hue 配置 Phoenix 提交 HBase 任务

Apache Phoenix 简介

Apache Phoenix 是一个开源的,大规模并行的关系数据库引擎,支持使用 Apache HBase 作为其后备存储的 OLTP for Hadoop。Phoenix 提供了一个 JDBC 驱动程序,该驱动程序隐藏了 noSQL 存储的复杂性,使用户能够创建,删除和更改 SQL 表,视图,索引和序列。

配置 Phoenix

(1)准备 Hue Python Virtual Environment

sudo /usr/lib/hue/build/env/bin/pip install phoenixdb

(2)修改 Hue 配置文件:

在 /etc/hue/conf/hue.ini的[notebook] [[interpreters]]部分加入:

[[[phoenix]]]
name=HBase Phoenix
interface=sqlalchemy
options='{"url": "phoenix:// ip-172-31-37-125.ap-southeast-1.compute.internal:8765/"}'

重启 Hue 服务

sudo systemctl restart hue.service
sudo systemctl status hue.service

(3) Hue 页面提交 Phoenix 任务:

Hue – Editor 部分因为配置文件的更新,出现了 HBase Phoenix 的选项, 创建和查询 Table :

image.png

 
CREATE TABLE user (id varchar PRIMARY KEY,name varchar,passwd varchar)
upsert into user(id, name, passwd) values('001', 'admin', 'admin')
select * from user

image.png

HBase 显示列名乱码修正

(1)当完成上述操作时,回到 HBase Shell 查看表内容,发现列名为乱码:

image.png

使用 Phoenix 命令行(/usr/lib/phoenix/bin/sqlline.py, 不透过Hue)创建表仍能重现该问题,且乱码不会在 Phoenix JDBC 连接中出现:

image.png

(2)在 Phoenix 创建表时最后加上 COLUMN_ENCODED_BYTES= 0可规避该问题:

CREATE TABLE user02 (id varchar PRIMARY KEY,name varchar,passwd varchar) COLUMN_ENCODED_BYTES= 0
upsert into user02(id, name, passwd) values('002', 'admin', 'admin')
select * from user02

HBase Shell 查看结果,列名已经显示正常:

image.png

Hue 连接 Redshift 提交任务

当数仓平台中涉及 Amazon EMR 和 Amazon Redshift 等多种服务时,通过 Hue 丰富的 Connectors 扩展种类,可以轻松实现统一交互的功能。

(1)准备 Hue Python Virtual Environment

cd /usr/lib/hue/
sudo ./build/env/bin/pip install sqlalchemy-redshift
sudo /usr/lib/hue/build/env/bin/pip2.7 install psycopg2-binary

(2)修改 Hue 配置文件:

在/etc/hue/conf/hue.ini的[notebook] [[interpreters]]部分加入:

[[[redshift]]]
name = Redshift
interface=sqlalchemy
  options='{"url": "redshift+psycopg2://username:[email protected]:5439/database"}'

重启 Hue 服务

sudo systemctl restart hue.service
sudo systemctl status hue.service

(3) Hue 页面提交 Redshift 任务:

Hue – Editor 部分因为配置文件的更新,出现了 Reshift 的选项:

image.png

提交 SQL 查询,轻松获取 Amazon Redshift 数仓数据:

image.png

总结

本文主要帮助使用 Amazon EMR 的用户,通过 Hue 实现统一数仓平台开发工具,一方面集中管理数仓 SQL 开发任务,另一方面为其它部门提供自主分析的平台,对数仓建设有一定的推动作用。

本篇作者

image.png

Sunny Fang Amazon 技术客户经理,主要支持金融,互联网行业客户的架构优化、成本管理、技术咨询等工作,并专注在大数据和容器方向的技术研究和实践。在加入 Amazon 之前,曾就职于 Citrix 和微软等科技公司,拥有8年虚拟化与公有云领域的架构优化和支持经验。

image.png

张尹 Amazon 技术客户经理,负责企业级客户的架构和成本优化、技术支持等工作。有多年的大数据架构设计,数仓建模等实战经验。在加入 Amazon 之前,长期负责头部电商大数据平台架构设计、数仓建模、运维等相关工作。

 

文章来源:https://dev.amazoncloud.cn/column/article/630b3f0176658473a3220015?sc_medium=regulartraffic&sc_campaign=crossplatform&sc_channel=bokey

标签:Hue,Phoenix,hue,sudo,Amazon,Apache
From: https://www.cnblogs.com/AmazonwebService/p/17674381.html

相关文章

  • 使用 Amazon SageMaker 的生成式 AI 定制个性化头像
    生成式AI已经成为各行业创意过程增强和加速的常用工具,包括娱乐、广告和平面设计。它可以为观众创造更个性化的体验,并提高最终产品的整体质量。亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案例、技术专栏、培训视频、活动与竞赛等。帮......
  • 使用 Phoenix LiveView 构建 Instagram (3)
    使用PETAL(Phoenix、Elixir、TailwindCSS、AlpineJS、LiveView)技术栈构建一个简化版的InstagramWeb应用程序在第2部分中,我们添加了编辑帐户和上传用户头像的功能,在这部分中,我们将处理用户的个人资料。您可以赶上Instagram克隆GitHubRepo。首先,我们需要路由,lib/instagra......
  • 使用 Phoenix LiveView 构建 Instagram (1)
    使用PETAL(Phoenix、Elixir、TailwindCSS、AlpineJS、LiveView)技术栈构建一个简化版的InstagramWeb应用程序更好的学习方法是亲自动手构建东西,让我们使用很棒的PETAL(Phoenix、Elixir、TailwindCSS、AlpineJS、LiveView)堆栈构建一个简化版的InstagramWeb应用程序,并深入了......
  • 在 Amazon 搭建无代码可视化的数据分析和建模平台
    现代企业常常会有利用数据分析和机器学习帮助解决业务痛点的需求。如制造业中,利用设备采集上来的数据做预测性维护,质量控制;在零售业中,利用客户端端采集的数据做渠道转化率分析,个性化推荐等。亚马逊云科技开发者社区为开发者们提供全球的开发技术资源。这里有技术文档、开发案......
  • 使用 Amazon Lambda 进行无服务器计算:云架构中的一场革命
    引言十年前,无服务器架构还像是痴人说梦。不再如此了!有了AmazonLambda,我们现在可以建构和运行应用程序而不需要考虑服务器。云供应商会无缝地处理所有服务器的供应、扩展和管理。我们只需要关注代码。这为云部署带来了前所未有的敏捷性、自动化和优化。但是,要发挥它的全部......
  • Promethues手册
    Metrics类型promethues指标以向量的形式存储在时序数据中,每种metrics的存储都是一样的,但使用场景存在一定差异Counter只增不减的计数器http_requests_total服务器请求总数node_cpucpu使用总时长一般counter类型的指标建议以total结尾通过内置的PromQL可以进一步的......
  • Hue时间参数设置
    Oozie常用的系统常量常量使用公式含义说明${coord:minutes(intn)}返回日期时间:从一开始,周期执行n分钟${coord:hours(intn)}返回日期时间:从一开始,周期执行n*60分钟${coord:days(intn)}返回日期时间:从一开始,周期执行n*24*60分钟${coord:months(intn......
  • 解决访问 Amazon S3 对象时遇到的“访问被拒绝”错误
    作为AmazonS3的用户,在尝试访问S3存储桶中的对象时,您可能会遇到“访问被拒绝”错误。这些错误表示请求缺少执行所请求操作的有效凭证或权限策略。在本博文中,我将介绍各种故障排除步骤和配置检查,以解决访问S3对象时遇到的“访问被拒绝”错误。亚马逊云科技开发者社......
  • 『MdOI R4』Phoenix 官解(也许)更清晰的阐释
    \[\large(\sum\limits_{i=1}^n|s_i|)-(\sum\limits_{i=1}^{n-1}|s_{p_i}\bigcaps_{p_{i+1}}|)=|\bigcup\limits_{i=1}^ns_i|\]观察题目中式子,不难想到如果对二进制拆位,那么相当于要求对于每个二进制位,包含这一位的集合必须排列在一段区间内,因为左式中每一位至少出现一次,而右......
  • Amazon.S3是什么?
    Amazon.S3是什么?AmazonSimpleStorageService(AmazonS3)是一种对象存储服务,它允许用户将文件(.txt,.jpg,.pdfetc.)和数据存储在AmazonS3的块存储中,然后可以通过HTTP协议GET或POST请求来访问这些文件和数据。AmazonS3可以用于存储和分享大规模的文件和数据,......