首页 > 数据库 >这里有8种专坑同事的SQL写法,保证性能降低100倍,想来试试吗?

这里有8种专坑同事的SQL写法,保证性能降低100倍,想来试试吗?

时间:2023-07-11 20:31:34浏览次数:47  
标签:ref my 专坑 SQL Using 100 NULL type SELECT

今天给大家分享几个SQL常见的“坏毛病”及优化技巧。

SQL语句的执行顺序:

这里有8种专坑同事的SQL写法,保证性能降低100倍,想来试试吗?_SQL

1、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
ORDER BY create_time
LIMIT 1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT *
FROM operation
WHERE type = 'SQLStats'
AND name = 'SlowLog'
AND create_time > '2017-03-16 14:00:00'
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT *
> FROM my_balance b
> WHERE b.bpn = 14000000123
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。


3、关联更新、删除

虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET status = 'applying'
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | o | index | | PRIMARY | 8 | | 24 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o
JOIN (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( 'done' )
ORDER BY o.parent,
o.id
LIMIT 1) t
ON o.id = t.id
SET status = 'applying'

执行计划简化为:

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY | | | | | | | | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | Using where; Using filesort |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+


4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM my_order o
INNER JOIN my_appraise a ON a.orderid = o.id
ORDER BY a.is_reply ASC,
a.appraise_time DESC
LIMIT 0, 20

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | SIMPLE | a | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
| 1 | SIMPLE | o | eq_ref | PRIMARY | PRIMARY | 122 | a.orderid | 1 | NULL |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM ((SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 0
ORDER BY appraise_time DESC
LIMIT 0, 20)
UNION ALL
(SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 1
ORDER BY appraise_time DESC
LIMIT 0, 20)) t
ORDER BY is_reply ASC,
appraisetime DESC
LIMIT 20;


5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM my_neighbor n
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND EXISTS(SELECT 1
FROM message_info m
WHERE n.id = m.neighbor_id
AND m.inuser = 'xxx')
AND n.topic_type <> 5

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
| 1 | PRIMARY | n | ALL | | NULL | NULL | NULL | 1086041 | Using where |
| 1 | PRIMARY | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
| 2 | DEPENDENT SUBQUERY | m | ref | | idx_message_info | 122 | const | 1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM my_neighbor n
INNER JOIN message_info m
ON n.id = m.neighbor_id
AND m.inuser = 'xxx'
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = 'xxx'
WHERE n.topic_status < 4
AND n.topic_type <> 5

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| 1 | SIMPLE | m | ref | | idx_message_info | 122 | const | 1 | Using index condition |
| 1 | SIMPLE | n | eq_ref | | PRIMARY | 122 | ighbor_id | 1 | Using where |
| 1 | SIMPLE | sra | ref | | idx_user_id | 123 | const | 1 | Using where |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+


6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 1、聚合子查询;
  • 2、含有 LIMIT 的子查询;
  • 3、UNION 或 UNION ALL 子查询;
  • 4、输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM (SELECT target,
Count(*)
FROM operation
GROUP BY target) t
WHERE target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| 1 | PRIMARY | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | Using where |
| 2 | DERIVED | operation | index | idx_4 | idx_4 | 519 | NULL | 20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
Count(*)
FROM operation
WHERE target = 'rm-xxxx'
GROUP BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+


7、提前缩小范围

先上初始 SQL 语句:

SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | SIMPLE | o | ALL | NULL | NULL | NULL | NULL | 909119 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | SIMPLE | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 15 | Using temporary; Using filesort |
| 1 | PRIMARY | u | eq_ref | PRIMARY | PRIMARY | 4 | o.uid | 1 | NULL |
| 1 | PRIMARY | p | ALL | PRIMARY | NULL | NULL | NULL | 6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED | o | index | NULL | idx_1 | 5 | NULL | 909112 | Using where |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+


8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = '1234567'
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid


总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。



标签:ref,my,专坑,SQL,Using,100,NULL,type,SELECT
From: https://blog.51cto.com/u_16173760/6691723

相关文章

  • MySQL 数据库初体验
    目录一、数据库的基本概念1.数据2.表3.数据库4.数据库管理系统5.数据库系统原理二、数据库的发展数据库一代数据库二代数据库三代三、主流的数据库介绍1.SQLServer(微软公司产品)2.Oracle(甲骨文公司产品)3.DB2(IBM公司产品)4.MySQL(甲骨文公司收购)四、关系型数据库五、非关系......
  • python 之 mysql8 基础
    一、表操作1、查看当前所在的库>selectdatabase():+------------+|database()|+------------+|oldboy|+------------+2、usedatabase选择库3、查看表>showtables 查看有几个表>showcreatetablestudent; 查看创建表的过程+---------+-----------......
  • 针对表的SQL语句
    查看表showtables;#查看所有表showcreatetable表名;#查看表结构describle/desc表名;#查看格式化表结构增加表createtable表名(字段名1数据类型约束条件约束条件,字段名2数据类型约束条件约束条件,字段名3数据类型约束条件约束条件,字段名4数据类型约......
  • 在WinServer 2022 Core 上安装SCVMM2022和SqlServer2022
    在WindowsServer2022Core上安装SystemCenterVirtualMachineManager(VMM)2022管理服务器和SqlServer2022CU5系统环境如下:OS:windowsserver2022CoreDataCenterDB:SqlServer2022withCU5ADK: Windows11版本22H2的ADK: https://learn.microsoft.com/zh-cn/wi......
  • 2023-07-11:给定正整数 n, 返回在 [1, n] 范围内具有 至少 1 位 重复数字的正整数的个数
    2023-07-11:给定正整数n,返回在[1,n]范围内具有至少1位重复数字的正整数的个数。输入:n=100。输出:10。答案2023-07-11:函数的主要思路如下:1.若n小于等于10,则直接返回0,因为在[1,10]范围内不存在重复数字的情况。2.计算n的位数和偏移量。首先计算n的位数和一个偏移量o......
  • Nginx代理Mysql
    10.2.24.161部署nginx,代理10.2.24.191:3306数据库1.安装stream模块nginx默认不会编译stream模块的,需要在编译的时候,指定--with-stream./configure--prefix=xxx--add-module=xxxx--add-module=xxx--with-stream我在10.2.24.161执行:./configure--prefix=/opt/local/nginx......
  • 技术分享 | 徐轶韬:从MySQL5.7升级到MySQL 8.0
    在6月20日举办的【墨天轮数据库沙龙-MySQL5.7停服影响与应对方案】中,甲骨文MySQL解决方案首席工程师徐轶韬分享了《从MySQL5.7升级到MySQL8.0》主题演讲,本文为整理内容。导读2015年10月发布的MySQL5.7版本追加了JSON数据类型、多源复制等新功能,支持在线更改InnoDB缓冲、全......
  • SqlServer取当前日期0点到23点59分59秒
    --2023-07-1100:00:00.0002023-07-1123:59:59.000SELECTCONVERT(DATETIME,CONVERT(VARCHAR(10),GETDATE(),120)),DATEADD(SECOND,-1,CONVERT(DATETIME,CONVERT(VARCHAR(10),GETDATE()+1,120)))--2023-07-1100:00:002023-07-1123:59:59selectconvert(varchar(......
  • MySQL迁移达梦数据库注意事项
    mysql<—>dmmysql迁移到dm报错【错误消息:不支持该数据类型】mysql迁移到dm报错【错误消息:不支持该数据类型】|达梦技术社区(dameng.com)更改迁移工具DM连接驱动.这个驱动地址在安装包里面有,相对路径为:/drivers/jdbc,可以挑选最新的驱动。不支持直接comment注释创建......
  • 「Python」参数化查询防止SQL注入攻击
    importpymysql#1.链接mysqlconn=pymysql.connect(user='root',password="123",host='127.0.0.1',database='cars'#需要去数据库创建表,无法在此创建) #2.获取一个游标cursor=conn.cursor(cursor=pymysql.cursors.DictCursor)#返回的查询结果以字典的形式表示,其......