首页 > 数据库 >图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的

图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的

时间:2023-06-08 13:06:43浏览次数:48  
标签:name HugeGraph graph 数据库 neo4j size create schema

HugeGraph介绍#

以下引自官方文档:

Copy

HugeGraph是一款易用、高效、通用的开源图数据库系统(Graph Database,GitHub项目地址), 实现了Apache TinkerPop3框架及完全兼容Gremlin查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的应用和产品。HugeGraph支持百亿以上的顶点和边快速导入,并提供毫秒级的关联关系查询能力(OLTP), 并可与Hadoop、Spark等大数据平台集成以进行离线分析(OLAP)。

HugeGraph典型应用场景包括深度关系探索、关联分析、路径搜索、特征抽取、数据聚类、社区检测、 知识图谱等,适用业务领域有如网络安全、电信诈骗、金融风控、广告推荐、社交网络和智能机器人等。

划重点:
- 基于TinkerPop3框架,兼容Gremlin查询语言
- OLTP(开源) 与 OLAP(商业版)
- 常用图应用支持—— 路径搜索、推荐等

架构介绍#

架构图#

HugeGraph包括三个层次的功能,分别是存储层、计算层和用户接口层。 HugeGraph支持OLTP和OLAP两种图计算类型

图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的_mysql

组件#

HugeGraph的主要功能分为HugeCore、ApiServer、HugeGraph-Client、HugeGraph-Loader和HugeGraph-Studio等组件构成,各组件之间的通信关系如下图所示。

图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的_Graph_02

其中核心组件:

  • HugeCore :HugeGraph的核心模块,TinkerPop的接口主要在该模块中实现。
  • ApiServer :提供RESTFul Api接口,对外提供Graph Api、Schema Api和Gremlin Api等接口服务。
  • HugeGraph-Client:基于Java客户端驱动程序

生态组件:

  • HugeGraph-Loader:数据导入模块。HugeGraph-Loader可以扫描并分析现有数据,自动生成Graph Schema创建语言,通过批量方式快速导入数据。
  • HugeGraph-Studio:基于Web的可视化IDE环境。以Notebook方式记录Gremlin查询,可视化展示Graph的关联关系。HugeGraph-Studio也是本系统推荐的工具。

HugeGraph-Studio 看起来已经被抛弃了,研发团队正开发一个名为'hugegraph-hubble' 的新项目:

Copy

hugegraph-hubble is a graph management and analysis platform that provides features: graph data load, schema management, graph relationship analysis and graphical display.

根据官方的说明,hubble定义为图谱管理和分析平台,提供图谱数据加载、schema管理、图分析和可视化展示,目前正在研发中,预计2020年9月份会发布首个版本。

设计理念#

常见的图数据表示模型有两种:

  • RDF(Resource Description Framework)模型: 学术界的选择,通过sparql来进行查询,jenagStore等等
  • 属性图(Property Graph)模型,工业界的选择,neo4jjanusgraph都是这种方案。

RDF是W3C标准,而Property Graph是工业标准,受到广大图数据库厂商的广泛支持。HugeGraph采用Property Graph,遵循工业标准。

HugeGraph存储概念模型详见下图:

图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的_ci_03

主要包含几个部分:

  • Vertex(顶点),对应一个实体(Entity)
  • Vertex Label(顶点的类型),对应一个概念(Concept)
  • 属性(图里的name、age),PropertyKey
  • Edge边(图里的lives),对应RDF里的Relation

可扩展性#

HugeGraph提供了丰富的插件扩展机制,包含几个维度的扩展项:

  • 后端存储
  • 序列化器
  • 自定义配置项
  • 分词器

插件实现机制

  1. HugeGraph提供插件接口HugeGraphPlugin,通过Java SPI机制支持插件化
  2. HugeGraph提供了4个扩展项注册函数:registerOptions()registerBackend()registerSerializer()registerAnalyzer()
  3. 插件实现者实现相应的Options、Backend、Serializer或Analyzer的接口
  4. 插件实现者实现HugeGraphPlugin接口的register()方法,在该方法中注册上述第3点所列的具体实现类,并打成jar包
  5. 插件使用者将jar包放在HugeGraph Server安装目录的plugins目录下,修改相关配置项为插件自定义值,重启即可生效

从案例深入源码#

想要深入的理解一个系统的源码,先从具体的应用入手。先查看example代码:

https://github.com/hugegraph/hugegraph/blob/master/hugegraph-example/src/main/java/com/baidu/hugegraph/example/Example1.java

Copy

public static void main(String[] args) throws Exception {
        LOG.info("Example1 start!");

        HugeGraph graph = ExampleUtil.loadGraph();

        Example1.showFeatures(graph);

        Example1.loadSchema(graph);
        Example1.loadData(graph);
        Example1.testQuery(graph);
        Example1.testRemove(graph);
        Example1.testVariables(graph);
        Example1.testLeftIndexProcess(graph);

        Example1.thread(graph);

        graph.close();

        HugeFactory.shutdown(30L);
    }

1. loadGraph#

要使用hugegraph,需要先初始化一个HugeGraph对象,而LoadGraph 正是做这个的。

图数据库HugeGraph——这个无非是利用cassandra+ES作为后端来做的图数据库,支持分布式而已,要说性能,肯定是没有原生的neo4j强的_ci_04

Copy

public static HugeGraph loadGraph(boolean needClear, boolean needProfile) {
        if (needProfile) {
            profile();
        }

        registerPlugins();

        String conf = "hugegraph.properties";
        try {
            String path = ExampleUtil.class.getClassLoader()
                                     .getResource(conf).getPath();
            File file = new File(path);
            if (file.exists() && file.isFile()) {
                conf = path;
            }
        } catch (Exception ignored) {
        }

        HugeGraph graph = HugeFactory.open(conf);

        if (needClear) {
            graph.clearBackend();
        }
        graph.initBackend();

        return graph;
    }
1.1 registerPlugins

其中 registerPlugins 注册插件,注意上面介绍的扩展机制。hugegraph所有的后端存储都需要通过插件注册。

Copy

public static void registerPlugins() {
        if (registered) {
            return;
        }
        registered = true;

        RegisterUtil.registerCassandra();
        RegisterUtil.registerScyllaDB();
        RegisterUtil.registerHBase();
        RegisterUtil.registerRocksDB();
        RegisterUtil.registerMysql();
        RegisterUtil.registerPalo();
    }

注册主要是register配置、序列化器和backend,比如下面是mysql的。

Copy

public static void registerMysql() {
        // Register config
        OptionSpace.register("mysql",
                "com.baidu.hugegraph.backend.store.mysql.MysqlOptions");
        // Register serializer
        SerializerFactory.register("mysql",
                "com.baidu.hugegraph.backend.store.mysql.MysqlSerializer");
        // Register backend
        BackendProviderFactory.register("mysql",
                "com.baidu.hugegraph.backend.store.mysql.MysqlStoreProvider");
    }
1.2 HugeFactory.open

HugeFactory 是Hugraph的工厂类,支持传入Configuraion配置信息,构建一个HugeGraph实例,注意这里为了线程安全,签名采用synchronized

Copy

public static synchronized HugeGraph open(Configuration config) {
        HugeConfig conf = config instanceof HugeConfig ?
                          (HugeConfig) config : new HugeConfig(config);
        String name = conf.get(CoreOptions.STORE);
        checkGraphName(name, "graph config(like hugegraph.properties)");
        name = name.toLowerCase();
        HugeGraph graph = graphs.get(name);
        if (graph == null || graph.closed()) {
            graph = new StandardHugeGraph(conf);
            graphs.put(name, graph);
        } else {
            String backend = conf.get(CoreOptions.BACKEND);
            E.checkState(backend.equalsIgnoreCase(graph.backend()),
                         "Graph name '%s' has been used by backend '%s'",
                         name, graph.backend());
        }
        return graph;
    }

这里顺带提下配置文件,通过代码看到,默认是读取hugegraph.properties.

1.3 HugeGraph 对象

HugeGraph是一个interface,继承gremlin的Graph接口,定义了图谱的Schema定义、数据存储、查询等API方法。从上面1.2可以看到,默认的实现是StandardHugeGraph

Copy

public interface HugeGraph extends Graph {

    public HugeGraph hugegraph();

    public SchemaManager schema();

    public Id getNextId(HugeType type);

    public void addPropertyKey(PropertyKey key);
    public void removePropertyKey(Id key);
    public Collection<PropertyKey> propertyKeys();
    public PropertyKey propertyKey(String key);
    public PropertyKey propertyKey(Id key);
    public boolean existsPropertyKey(String key);

...
1.4 graph.clearBackend 与initBackend

clearBackend将后端数据清理,initBackend初始化基本的数据结构。

2. loadSchema#

该方法,用来定义schema:

Copy

public static void loadSchema(final HugeGraph graph) {

        SchemaManager schema = graph.schema();

        // Schema changes will be commit directly into the back-end
        LOG.info("===============  propertyKey  ================");
        schema.propertyKey("id").asInt().create();
        schema.propertyKey("name").asText().create();
        schema.propertyKey("gender").asText().create();
        schema.propertyKey("instructions").asText().create();
        schema.propertyKey("category").asText().create();
        schema.propertyKey("year").asInt().create();
        schema.propertyKey("time").asText().create();
        schema.propertyKey("timestamp").asDate().create();
        schema.propertyKey("ISBN").asText().create();
        schema.propertyKey("calories").asInt().create();
        schema.propertyKey("amount").asText().create();
        schema.propertyKey("stars").asInt().create();
        schema.propertyKey("age").asInt().valueSingle().create();
        schema.propertyKey("comment").asText().valueSet().create();
        schema.propertyKey("contribution").asText().valueSet().create();
        schema.propertyKey("nickname").asText().valueList().create();
        schema.propertyKey("lived").asText().create();
        schema.propertyKey("country").asText().valueSet().create();
        schema.propertyKey("city").asText().create();
        schema.propertyKey("sensor_id").asUUID().create();
        schema.propertyKey("versions").asInt().valueList().create();

        LOG.info("===============  vertexLabel  ================");

        schema.vertexLabel("person")
              .properties("name", "age", "city")
              .primaryKeys("name")
              .create();
        schema.vertexLabel("author")
              .properties("id", "name", "age", "lived")
              .primaryKeys("id").create();
        schema.vertexLabel("language").properties("name", "versions")
              .primaryKeys("name").create();
        schema.vertexLabel("recipe").properties("name", "instructions")
              .primaryKeys("name").create();
        schema.vertexLabel("book").properties("name")
              .primaryKeys("name").create();
        schema.vertexLabel("reviewer").properties("name", "timestamp")
              .primaryKeys("name").create();

        // vertex label must have the properties that specified in primary key
        schema.vertexLabel("FridgeSensor").properties("city")
              .primaryKeys("city").create();

        LOG.info("===============  vertexLabel & index  ================");
        schema.indexLabel("personByCity")
              .onV("person").secondary().by("city").create();
        schema.indexLabel("personByAge")
              .onV("person").range().by("age").create();

        schema.indexLabel("authorByLived")
              .onV("author").search().by("lived").create();

        // schemaManager.getVertexLabel("author").index("byName").secondary().by("name").add();
        // schemaManager.getVertexLabel("recipe").index("byRecipe").materialized().by("name").add();
        // schemaManager.getVertexLabel("meal").index("byMeal").materialized().by("name").add();
        // schemaManager.getVertexLabel("ingredient").index("byIngredient").materialized().by("name").add();
        // schemaManager.getVertexLabel("reviewer").index("byReviewer").materialized().by("name").add();

        LOG.info("===============  edgeLabel  ================");

        schema.edgeLabel("authored").singleTime()
              .sourceLabel("author").targetLabel("book")
              .properties("contribution", "comment")
              .nullableKeys("comment")
              .create();

        schema.edgeLabel("write").multiTimes().properties("time")
              .sourceLabel("author").targetLabel("book")
              .sortKeys("time")
              .create();

        schema.edgeLabel("look").multiTimes().properties("timestamp")
              .sourceLabel("person").targetLabel("book")
              .sortKeys("timestamp")
              .create();

        schema.edgeLabel("created").singleTime()
              .sourceLabel("author").targetLabel("language")
              .create();

        schema.edgeLabel("rated")
              .sourceLabel("reviewer").targetLabel("recipe")
              .create();
    }

划重点:
- SchemaManager schema = graph.schema() 获取SchemaManager
- schema.propertyKey(NAME).asXXType().create() 创建属性
- schema.vertexLabel("person") // 定义概念
.properties("name", "age", "city") // 定义概念的属性
.primaryKeys("name") // 定义primary Keys,primary Key组合后可以唯一确定一个实体
.create();
- schema.indexLabel("personByCity").onV("person").secondary().by("city").create(); 定义索引
- schema.edgeLabel("authored").singleTime()
.sourceLabel("author").targetLabel("book")
.properties("contribution", "comment")
.nullableKeys("comment")
.create(); // 定义关系

3. loadData#

创建实体,注意格式,K-V成对出现:

Copy

graph.addVertex(T.label, "book", "name", "java-3");

创建关系,Vertex的addEdge方法:

Copy

Vertex james = tx.addVertex(T.label, "author", "id", 1,
                                "name", "James Gosling",  "age", 62,
                                "lived", "San Francisco Bay Area");

    Vertex java = tx.addVertex(T.label, "language", "name", "java",
                               "versions", Arrays.asList(6, 7, 8));
    Vertex book1 = tx.addVertex(T.label, "book", "name", "java-1");
    Vertex book2 = tx.addVertex(T.label, "book", "name", "java-2");
    Vertex book3 = tx.addVertex(T.label, "book", "name", "java-3");

    james.addEdge("created", java);
    james.addEdge("authored", book1,
                  "contribution", "1990-1-1",
                  "comment", "it's a good book",
                  "comment", "it's a good book",
                  "comment", "it's a good book too");
    james.addEdge("authored", book2, "contribution", "2017-4-28");

    james.addEdge("write", book2, "time", "2017-4-28");
    james.addEdge("write", book3, "time", "2016-1-1");
    james.addEdge("write", book3, "time", "2017-4-28");

添加后,需要commit

4. testQuery 测试查询#

查询主要通过GraphTraversal, 可以通过graph.traversal()获得:

Copy

public static void testQuery(final HugeGraph graph) {
        // query all
        GraphTraversal<Vertex, Vertex> vertices = graph.traversal().V();
        int size = vertices.toList().size();
        assert size == 12;
        System.out.println(">>>> query all vertices: size=" + size);

        // query by label
        vertices = graph.traversal().V().hasLabel("person");
        size = vertices.toList().size();
        assert size == 5;
        System.out.println(">>>> query all persons: size=" + size);

        // query vertex by primary-values
        vertices = graph.traversal().V().hasLabel("author").has("id", 1);
        List<Vertex> vertexList = vertices.toList();
        assert vertexList.size() == 1;
        System.out.println(">>>> query vertices by primary-values: " +
                           vertexList);

        VertexLabel author = graph.schema().getVertexLabel("author");
        String authorId = String.format("%s:%s", author.id().asString(), "11");

        // query vertex by id and query out edges
        vertices = graph.traversal().V(authorId);
        GraphTraversal<Vertex, Edge> edgesOfVertex = vertices.outE("created");
        List<Edge> edgeList = edgesOfVertex.toList();
        assert edgeList.size() == 1;
        System.out.println(">>>> query edges of vertex: " + edgeList);

        vertices = graph.traversal().V(authorId);
        vertexList = vertices.out("created").toList();
        assert vertexList.size() == 1;
        System.out.println(">>>> query vertices of vertex: " + vertexList);

        // query edge by sort-values
        vertices = graph.traversal().V(authorId);
        edgesOfVertex = vertices.outE("write").has("time", "2017-4-28");
        edgeList = edgesOfVertex.toList();
        assert edgeList.size() == 2;
        System.out.println(">>>> query edges of vertex by sort-values: " +
                           edgeList);

        // query vertex by condition (filter by property name)
        ConditionQuery q = new ConditionQuery(HugeType.VERTEX);
        PropertyKey age = graph.propertyKey("age");
        q.key(HugeKeys.PROPERTIES, age.id());
        if (graph.backendStoreFeatures()
                 .supportsQueryWithContainsKey()) {
            Iterator<Vertex> iter = graph.vertices(q);
            assert iter.hasNext();
            System.out.println(">>>> queryVertices(age): " + iter.hasNext());
            while (iter.hasNext()) {
                System.out.println(">>>> queryVertices(age): " + iter.next());
            }
        }

        // query all edges
        GraphTraversal<Edge, Edge> edges = graph.traversal().E().limit(2);
        size = edges.toList().size();
        assert size == 2;
        System.out.println(">>>> query all edges with limit 2: size=" + size);

        // query edge by id
        EdgeLabel authored = graph.edgeLabel("authored");
        VertexLabel book = graph.schema().getVertexLabel("book");
        String book1Id = String.format("%s:%s", book.id().asString(), "java-1");
        String book2Id = String.format("%s:%s", book.id().asString(), "java-2");

        String edgeId = String.format("S%s>%s>%s>S%s",
                                      authorId, authored.id(), "", book2Id);
        edges = graph.traversal().E(edgeId);
        edgeList = edges.toList();
        assert edgeList.size() == 1;
        System.out.println(">>>> query edge by id: " + edgeList);

        Edge edge = edgeList.get(0);
        edges = graph.traversal().E(edge.id());
        edgeList = edges.toList();
        assert edgeList.size() == 1;
        System.out.println(">>>> query edge by id: " + edgeList);

        // query edge by condition
        q = new ConditionQuery(HugeType.EDGE);
        q.eq(HugeKeys.OWNER_VERTEX, IdGenerator.of(authorId));
        q.eq(HugeKeys.DIRECTION, Directions.OUT);
        q.eq(HugeKeys.LABEL, authored.id());
        q.eq(HugeKeys.SORT_VALUES, "");
        q.eq(HugeKeys.OTHER_VERTEX, IdGenerator.of(book1Id));

        Iterator<Edge> edges2 = graph.edges(q);
        assert edges2.hasNext();
        System.out.println(">>>> queryEdges(id-condition): " +
                           edges2.hasNext());
        while (edges2.hasNext()) {
            System.out.println(">>>> queryEdges(id-condition): " +
                               edges2.next());
        }

        // NOTE: query edge by has-key just supported by Cassandra
        if (graph.backendStoreFeatures().supportsQueryWithContainsKey()) {
            PropertyKey contribution = graph.propertyKey("contribution");
            q.key(HugeKeys.PROPERTIES, contribution.id());
            Iterator<Edge> edges3 = graph.edges(q);
            assert edges3.hasNext();
            System.out.println(">>>> queryEdges(contribution): " +
                               edges3.hasNext());
            while (edges3.hasNext()) {
                System.out.println(">>>> queryEdges(contribution): " +
                                   edges3.next());
            }
        }

        // query by vertex label
        vertices = graph.traversal().V().hasLabel("book");
        size = vertices.toList().size();
        assert size == 5;
        System.out.println(">>>> query all books: size=" + size);

        // query by vertex label and key-name
        vertices = graph.traversal().V().hasLabel("person").has("age");
        size = vertices.toList().size();
        assert size == 5;
        System.out.println(">>>> query all persons with age: size=" + size);

        // query by vertex props
        vertices = graph.traversal().V().hasLabel("person")
                        .has("city", "Taipei");
        vertexList = vertices.toList();
        assert vertexList.size() == 1;
        System.out.println(">>>> query all persons in Taipei: " + vertexList);

        vertices = graph.traversal().V().hasLabel("person").has("age", 19);
        vertexList = vertices.toList();
        assert vertexList.size() == 1;
        System.out.println(">>>> query all persons age==19: " + vertexList);

        vertices = graph.traversal().V().hasLabel("person")
                        .has("age", P.lt(19));
        vertexList = vertices.toList();
        assert vertexList.size() == 1;
        assert vertexList.get(0).property("age").value().equals(3);
        System.out.println(">>>> query all persons age<19: " + vertexList);

        String addr = "Bay Area";
        vertices = graph.traversal().V().hasLabel("author")
                        .has("lived", Text.contains(addr));
        vertexList = vertices.toList();
        assert vertexList.size() == 1;
        System.out.println(String.format(">>>> query all authors lived %s: %s",
                           addr, vertexList));
    }

划重点

查询指定label的实体:

Copy

vertices = graph.traversal().V().hasLabel("person");
 size = vertices.toList().size();
根据primary-values查询实体:

Copy

vertices = graph.traversal().V().hasLabel("author").has("id", 1);
        List<Vertex> vertexList = vertices.toList();
查询edge:

查询所有edge:

Copy

GraphTraversal<Edge, Edge> edges = graph.traversal().E().limit(2);

根据ID查询edge:

Copy

EdgeLabel authored = graph.edgeLabel("authored");
    VertexLabel book = graph.schema().getVertexLabel("book");
    String book1Id = String.format("%s:%s", book.id().asString(), "java-1");
    String book2Id = String.format("%s:%s", book.id().asString(), "java-2");

    String edgeId = String.format("S%s>%s>%s>S%s",
                                  authorId, authored.id(), "", book2Id);
    edges = graph.traversal().E(edgeId);

注意,edge的id由几个字段拼接起来的: "S%s>%s>%s>S%s",authorId, authored.id(), "", book2Id)

根据条件查询edge:

Copy

q = new ConditionQuery(HugeType.EDGE);
        q.eq(HugeKeys.OWNER_VERTEX, IdGenerator.of(authorId));
        q.eq(HugeKeys.DIRECTION, Directions.OUT);
        q.eq(HugeKeys.LABEL, authored.id());
        q.eq(HugeKeys.SORT_VALUES, "");
        q.eq(HugeKeys.OTHER_VERTEX, IdGenerator.of(book1Id));

        Iterator<Edge> edges2 = graph.edges(q);
        assert edges2.hasNext();
        System.out.println(">>>> queryEdges(id-condition): " +
                           edges2.hasNext());
        while (edges2.hasNext()) {
            System.out.println(">>>> queryEdges(id-condition): " +
                               edges2.next());
        }

可以指定DIRECTION,

5. 删除#

删除Vetex,调用vetex自带的remove方法

Copy

// remove vertex (and its edges)
        List<Vertex> vertices = graph.traversal().V().hasLabel("person")
                                     .has("age", 19).toList();
        assert vertices.size() == 1;
        Vertex james = vertices.get(0);
        Vertex book6 = graph.addVertex(T.label, "book", "name", "java-6");
        james.addEdge("look", book6, "timestamp", "2017-5-2 12:00:08.0");
        james.addEdge("look", book6, "timestamp", "2017-5-3 12:00:08.0");
        graph.tx().commit();
        assert graph.traversal().V(book6.id()).bothE().hasNext();
        System.out.println(">>>> removing vertex: " + james);
        james.remove();
        graph.tx().commit();
        assert !graph.traversal().V(james.id()).hasNext();
        assert !graph.traversal().V(book6.id()).bothE().hasNext();

删除关系,也类似:

Copy

// remove edge
        VertexLabel author = graph.schema().getVertexLabel("author");
        String authorId = String.format("%s:%s", author.id().asString(), "11");
        EdgeLabel authored = graph.edgeLabel("authored");
        VertexLabel book = graph.schema().getVertexLabel("book");
        String book2Id = String.format("%s:%s", book.id().asString(), "java-2");

        String edgeId = String.format("S%s>%s>%s>S%s",
                                      authorId, authored.id(), "", book2Id);

        List <Edge> edges = graph.traversal().E(edgeId).toList();
        assert edges.size() == 1;
        Edge edge = edges.get(0);
        System.out.println(">>>> removing edge: " + edge);
        edge.remove();
        graph.tx().commit();
        assert !graph.traversal().E(edgeId).hasNext();

小结#

本文初步介绍了hugegraph设计理念、基本使用等。

标签:name,HugeGraph,graph,数据库,neo4j,size,create,schema
From: https://blog.51cto.com/u_11908275/6439006

相关文章

  • KingbaseES数据库配置Hikari数据源
     Hikari是一个高性能的数据库连接池,它是SpringBoot2.x中的默认数据源。一、下载驱动打开下面网址:选择对应平台的jdbc驱动程序。人大金仓-成为世界卓越的数据库产品与服务提供商(kingbase.com.cn)这里以x86平台为例:下载完成后目录里面包含以下文件:根据项目的JDK版本选择......
  • 008 数据库学习笔记--触发器
    主要内容来自:https://blog.csdn.net/KingCruel/article/details/106292310https://blog.csdn.net/qq_36330228/article/details/90582493触发器:触发器,可理解为一种特殊的存储过程。是一个特殊的事务(在执行过程中,可执行一些检查或设置条件,不满足时,可回滚操作)存储过程,通过存......
  • JAVA的springboot+vue企业客户信息反馈平台,附源码+数据库+文档+PPT
    1、项目介绍企业客户信息反馈平台能够通过互联网得到广泛的、全面的宣传,让尽可能多的用户了解和熟知企业客户信息反馈平台的便捷高效,不仅为客户提供了服务,而且也推广了自己,让更多的客户了解自己。对于企业客户信息反馈而言,若拥有自己的平台,通过平台得到更好的管理,同时提升了形象......
  • 软测5班数据库基础知识
    函数:字符串函数charindex('查找内容','源字符串'[,起始位置]),返回值为查找到的内容首字母所在的位置,如果未找到返回0。len('字符串'),返回字符串长度。lower('字符串'),返回小写字母。upper('字符串'),返回大写字母。ltrim('字符串'),返回去除字符串左边空格。rtrim('字符串'),返......
  • clickhouse读写数据库3-- clickhouse_driver 模块
    这是用百度的文心一言生成的代码。刚开始2次都是错误的,明确指出clickhouse_driver没有占位符,让AI重新生成。重新生成了2次之后,才得到正确代码  #!/usr/bin/envpython#-*-coding:utf-8-*-#author:henry#desc:整理clickhouse读写的范例,方便日后读写click......
  • 性能测试-批量向数据库中构造数据(10万条)
    通过存储过程向数据库sys_member表中插入10万条数据:向苏汽系统中Mysql插入批量数据(构造10万条数据):第1种方法:通过存储过程实现DROPPROCEDUREIFEXISTSmy_insert;CREATEPROCEDUREmy_insert()BEGINDECLAREnintDEFAULT0;loopname:LOOPinse......
  • 各种数据库连接字符串
    SqlServer “DataSource=127.0.0.1;InitialCatalog=dbname;UserId=sa;Password=****;”Oracle"DataSource=127.0.0.1/dbname;port=1521;UserId=orcl;Password=***'*;"DB2"Server=127.0.0.1:50000;Database=dbname;UID=DBADM;PWD=****;"M......
  • 007 数据库学习笔记--试图
    试图:虚拟表,由一个或多个表通过查询而定义出来的。将查询定义保存起来,实际不包括数据。与表的区别:表是用于存储数据的地方;试图存储的查询语句;试图作用:简化查询,增加数据的保密性,安全性上得到保障;试图缺点:只是简化查询,并不提高查询速度;......
  • 12万短文学网句子内容大全ACCESS数据库
    闲来无事,看到“短文学网”文章内容还算整洁,而且非常容易进行采集,于是也就手痒了弄了一下,速度非常快可能与网络没有大量广告啊、JS啊有关。详细的分类信息如下:qq日志包含有:qq空间(2098)条、非主流日(180)条、搞笑日志(132)条、个性日志(204)条、经典日志(260)条、空间文字(848)......
  • AntDB数据库入选艾媒金榜《2023年中国信创数据库企业TOP15》,位列前三
    近日,iiMediaRanking艾媒金榜最新公布了《2023年中国信创数据库企业TOP15》榜单,AntDB数据库凭借先进的技术服务及近些年在信创市场的优异表现进入榜单前三。图1:艾媒金榜《2023年中国信创数据库企业TOP15》iiMediaRanking艾媒金榜《2023年中国信创数据库企业TOP15》是依托艾媒自主......