首页 > 数据库 >sqlalchemy快速插入数据、scoped_session线程安全、基本增删查改、一对多、 多对多、 连表查询

sqlalchemy快速插入数据、scoped_session线程安全、基本增删查改、一对多、 多对多、 连表查询

时间:2023-04-10 16:56:59浏览次数:55  
标签:sqlalchemy name res 连表 session User query id

目录

1 sqlalchemy快速插入数据

# sqlalchemy是什么 orm框架,跟其他web框架没有必然联系,可以独立使用
# 安装,快速使用,执行原生sql
# 创建表和删除表
	-不能创建数据库
    -不能修改字段(增加,删除)
    
 



# 使用orm插入
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from models import Book
# 第一步:生成engine对象
engine = create_engine(
    "mysql+pymysql://[email protected]:3306/aaa",
    max_overflow=0,  # 超过连接池大小外最多创建的连接
    pool_size=5,  # 连接池大小
    pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
    pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
)

# 第二步:拿到一个Session类,传入engine
Session=sessionmaker(bind=engine)

# 第三步:拿到session对象,相当于连接对象(会话)
session=Session()

# 第四步,增加数据
book=Book(name='红楼梦',)
session.add(book)
session.commit()
# 第五步:关闭session对象

session.close()

2 scoped_session线程安全

2.1 基本使用

from sqlalchemy.orm import scoped_session
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

# 第一步:生成engine对象
engine = create_engine(
    "mysql+pymysql://[email protected]:3306/aaa",
    max_overflow=0,  # 超过连接池大小外最多创建的连接
    pool_size=5,  # 连接池大小
    pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
    pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
)

# 第二步:拿到一个Session类,传入engine
Session = sessionmaker(bind=engine)
# 线程不安全
# session = Session()

# 做成线程安全的:如何做的?
# 内部使用了local对象,取当前线程的session,如果当前线程有,就直接返回用,如果没有,创建一个,放到local中
# session 是  scoped_session 的对象
session = scoped_session(Session)

# 以后全局使用session即可,它线程安全

2.2 加在类上的装饰器

# session 是  scoped_session 的对象,类上没有属性和方法,但是,用的时候,确实用
session = scoped_session(Session) 


def speak():
    print('说话了')


def wrapper(func):
    def inner(*args, **kwargs):
        res = func()
        res.name = 'lqz'
        res.speak = speak
        return res

    return inner


@wrapper  # 语法糖会把Person当参数传入到装饰器中   Person=wrapper(Person)
class Person:
    pass


p = Person()

print(p.name)
p.speak()

3 基本增删查改

# 增,删,改
# 查 基本查询和高级查询


from models import User, Book
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from sqlalchemy.sql import text
engine = create_engine("mysql+pymysql://[email protected]:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)

# 1  增加:add   add_all
# user = User(name='pyy', email='[email protected]', extra='摄氏度法')
# user1 = User(name='yyy', email='[email protected]', extra='大沙发斯蒂芬')
# book = Book(name='西游记')
# # session.add(user)
# session.add_all([user, user1, book])  # 多个对象可以是models中任意表模型的对象
#
# session.commit()
# session.close()


# 2 基本查  filter  filter_by     filer:写条件     filter_by:等于的值
# filter
# 2.1 session.query(User)   中写表模型,可以写多个表模型(连表操作)  select * from User;
# 2.2 filter 过滤条件,必须写表达式  ==    >=    <=    !=   select * from user where user.id=1
# 2.3 all:普通列表  first
# user = session.query(User).filter(User.name == 'lqz').first()
# user = session.query(User).filter(User.name != 'lqz').all()
# print(user)
# res = session.query(User).filter(User.id > 1).all()
# print(res)

# filter_by  直接写等式    不能写成 User.name = 'lqz'
# user = session.query(User).filter_by(name='lqz').first()
# user = session.query(User).filter_by(id=2).first()
# user = session.query(User).filter_by(id=2).first()
# print(user)

# 3 删除(查到才能删) filter或filter_by查询的结果  不要all或first出来, .delete()即可
# res = session.query(User).filter_by(id=2).delete()
# session.commit()  # 一定不要忘了
# print(res) # 影响的行数


# 4 修改(查到才能改)
# 方式一:update修改
# res = session.query(User).filter_by(id=3).update({"name" : "彭于晏"})
# print(res)
# session.commit()
# 方式二,使用对象修改
# res = session.query(User).filter_by(id=3).first()
# res = session.query(User).filter_by(name='zzz').first()
# res.name='来来来'
# print(res.id)
# session.add(res)  # add 如果有主键,就是修改,如果没有主键就是新增
# session.commit()

3.1 基本增删查改和高级查询

# 4 查询: filer:写条件     filter_by:等于的值
# 4.1 查询所有  是list对象
# res = session.query(User).all()  # 是个普通列表
# print(type(res))
# print(len(res))

# 4.1.1 只查询某几个字段
# select name as xx,email from user;
# res = session.query(User.name.label('xx'), User.email)
# print(res)  # 打出原生sql
# # print(res.all())
# for item in res.all():
#     print(item[0])


# 4.1.2 filter传的是表达式,filter_by传的是参数
# res = session.query(User).filter(User.name == "lqz").all()
# res = session.query(User).filter(User.name != "lqz").all()
# res = session.query(User).filter(User.name != "lqz", User.email == '[email protected]').all()  # django 中使用 Q
# res = session.query(User).filter_by(name='lqz099').all()
# res = session.query(User).filter_by(name='lqz099',email='[email protected]').all()
# print(len(res))

# 4.2 取一个 all了后是list,list 没有first方法
# res = session.query(User).first()



# 4.3 查询所有,使用占位符(了解)  :value     :name
# select * from user where id <20 or name=lqz099
# res = session.query(User).filter(text("id<:value or name=:name")).params(value=10, name='lqz099').all()


# 4.4 自定义查询(了解)
# from_statement 写纯原生sql

# res=session.query(User).from_statement(text("SELECT * FROM users where email=:email")).params(email='[email protected]').all()
# # print(type(res[0]))  # 是book的对象,但是查的是User表   不要这样写
# print(res[0].name)  #

# 4.5 高级查询
#  条件
# 表达式,and条件连接
# res = session.query(User).filter(User.id > 1, User.name == 'lqz099').all() # and条件


# between
# res = session.query(User).filter(User.id.between(1, 9), User.name == 'lqz099').all()
# res = session.query(User).filter(User.id.between(1, 9)).all()

# in
# res = session.query(User).filter(User.id.in_([1,3,4])).all()
# res = session.query(User).filter(User.email.in_(['[email protected]','[email protected]'])).all()

# ~非,除。。外
# res = session.query(User).filter(~User.id.in_([1,3,4])).all()
# print(res)

# 二次筛选
# res = session.query(User).filter(~User.id.in_(session.query(User.id).filter_by(name='lqz099'))).all()
# print(res)


# and or条件
from sqlalchemy import and_, or_

# or_包裹的都是or条件,and_包裹的都是and条件
# res = session.query(User).filter(and_(User.id >= 3, User.name == 'lqz099')).all()  #  and条件
# res = session.query(User).filter(User.id < 3, User.name == 'lqz099').all()  #  等同于上面
# res = session.query(User).filter(or_(User.id < 2, User.name == 'eric')).all()
# res = session.query(User).filter(
#     or_(
#         User.id < 2,
#         and_(User.name == 'lqz099', User.id > 3),
#         User.extra != ""
#     )).all()


# 通配符,以e开头,不以e开头
# res = session.query(User).filter(User.email.like('%@%')).all()
# select user.id from user where  user.name not like e%;
# res = session.query(User.id).filter(~User.name.like('e%'))


# 分页
# 一页2条,查第5页
# res = session.query(User)[2*5:2*5+2]

# 排序,根据name降序排列(从大到小)
# res = session.query(User).order_by(User.email.desc()).all()
# res = session.query(Book).order_by(Book.price.desc()).all()
# res = session.query(Book).order_by(Book.price.asc()).all()
# 第一个条件重复后,再按第二个条件升序排
# res = session.query(User).order_by(User.name.desc(), User.id.asc())



# 分组查询  5个聚合函数
from sqlalchemy.sql import func

# res = session.query(User).group_by(User.extra)  # 如果是严格模式,就报错
# 分组之后取最大id,id之和,最小id  和分组的字段
# res = session.query(
#     User.extra,
#     func.max(User.id),
#     func.sum(User.id),
#     func.min(User.id)).group_by(User.extra).all()
# for item in res:
#     print(item[2])

# having
# select max(id),sum(id),min(id) from  user group by  user.extra   having id_max>2;
res = session.query(
    func.max(User.id),
    func.sum(User.id),
    func.min(User.id)).group_by(User.extra).having(func.max(User.id) > 2)








3.2 原生sql

### 方式一:
# 第一步:导入
from sqlalchemy import create_engine
# 第二步:生成引擎对象
engine = create_engine(
    "mysql+pymysql://[email protected]:3306/cnblogs",
    max_overflow=0,  # 超过连接池大小外最多创建的连接
    pool_size=5,  # 连接池大小
    pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
    pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
)
# 第三步:使用引擎获取连接,操作数据库
conn = engine.raw_connection()
cursor=conn.cursor()
cursor.execute('select * from aritcle')
print(cursor.fetchall())



### 方式二:
from models import User, Book
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
engine = create_engine("mysql+pymysql://[email protected]:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)

# 2.0.9 版本需要使用text包裹一下,原来版本不需要
# cursor = session.execute(text('select * from users'))
# result = cursor.fetchall()
# print(result)

cursor = session.execute(text('insert into books(name) values(:name)'), params={"name": '红楼梦'})
session.commit()
print(cursor.lastrowid)

session.close()

3.3 django中执行原生sql

# 选择的查询基表Book.objects.raw ,只是一个傀儡,正常查询出哪些字段,都能打印出来

def index(request):
    # books = Book.objects.raw('select * from app01_book where id=1')  # RawQuerySet  用起来跟列表一样
    # books = Publish.objects.raw('select * from app01_book where id=1')  # RawQuerySet  用起来跟列表一样
    # print(books[0])
    # print(type(books[0]))
    # # for book in books:
    # #     print(book.name)
    # # print(books[0].name)
    # print(books[0].addr)  #也能拿出来,但是是不合理的

    res = Book.objects.raw('select * from app01_publish where id=1')  # RawQuerySet  用起来跟列表一样
    print(res[0])
    print(type(res[0]))
    print(res[0].name)
    # book 没有addr,但是也打印出来了
    print(res[0].addr)

    return HttpResponse('ok')

4 一对多

# 一对一:本身是一个表,拆成两个表,做一对一的关联;;;本质就是一对多,只不过关联字段唯一
# 一对多:关联字段写在多的一方
# 多对多:需要建立中间表;;本质也是一对多

# 本质就只有一种外键关系

4.1 表模型

# 一对多关系
from sqlalchemy import create_engine
import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

# 第二步:执行declarative_base,得到一个类
Base = declarative_base()


class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='篮球')


class Person(Base):
    __tablename__ = 'person'
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    # hobby指的是tablename而不是类名
    # 关联字段写在多的一方,写在Person中,跟hobby表中id字段做外键关联
    hobby_id = Column(Integer, ForeignKey("hobby.id"))

    # 跟数据库无关,不会新增字段,只用于快速链表操作
    # 基于对象的跨表查询:就要加这个字段,取对象  person.hobby     pserson.hobby_id
    # 类名,backref用于反向查询
    hobby = relationship('Hobby', backref='pers')  # 如果有hobby对象,拿到所有人 hobby.pers

    def __repr__(self):
        return self.name


engine = create_engine("mysql+pymysql://[email protected]:3306/aaa", )

# 把表同步到数据库  (把被Base管理的所有表,都创建到数据库)
Base.metadata.create_all(engine)

# 把所有表删除
# Base.metadata.drop_all(engine)

4.2 新增和基于对象的查询

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from models1 import Hobby, Person

engine = create_engine("mysql+pymysql://[email protected]:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)

# 一对多新增

# hobby = Hobby(caption='乒乓球')
# session.add(hobby)
# person = Person(name='张三')
# session.add(person)

# hobby=session.query(Hobby).filter(Hobby.caption=='乒乓球').first()
# # person = Person(name='王五',hobby_id=hobby.id)
# person = Person(name='王五',hobby_id=1)
# session.add(person)


# 支持按对象的增加方式,必须加relationship 做关联
# 方式一
# hobby=session.query(Hobby).filter(Hobby.caption=='乒乓球').first()
# person = Person(name='赵六',hobby=hobby)
# 方式二
# hobby = Hobby(caption='羽毛球')  # 表中暂时没有
# person = Person(name='赵六', hobby=hobby)
# session.add_all([person, hobby])
# session.commit()




## 基于对象的跨表查询  .
# 正向查询
# person=session.query(Person).filter(Person.name=='王五').first()
# # print(person.hobby_id)
# print(person.hobby)  # Hobby 的对象

# 反向查询
# hobby=session.query(Hobby).filter(Hobby.id==1).first()
# print(hobby.pers)



# 基于连表的查询(一会讲)

5 多对多

5.1 表模型

# 一对多关系
from sqlalchemy import create_engine
import datetime
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

# 第二步:执行declarative_base,得到一个类
Base = declarative_base()


# 多对多

# 中间表  手动创建
class Boy2Girl(Base):
    __tablename__ = 'boy2girl'
    id = Column(Integer, primary_key=True, autoincrement=True)
    girl_id = Column(Integer, ForeignKey('girl.id'))
    boy_id = Column(Integer, ForeignKey('boy.id'))


class Girl(Base):
    __tablename__ = 'girl'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    def __str__(self):
        return self.name

    def __repr__(self):
        return self.name


class Boy(Base):
    __tablename__ = 'boy'
    id = Column(Integer, primary_key=True, autoincrement=True)
    name = Column(String(64), unique=True, nullable=False)



    # 与生成表结构无关,仅用于查询方便,放在哪个单表中都可以
    # 方便快速查询,写了这个字段,相当于django 的manytomany,快速使用基于对象的跨表查询
    girls = relationship('Girl', secondary='boy2girl', backref='boys')

    def __str__(self):
        return self.name

    def __repr__(self):
        return self.name


engine = create_engine("mysql+pymysql://[email protected]:3306/aaa", )


# 把表同步到数据库  (把被Base管理的所有表,都创建到数据库)
Base.metadata.create_all(engine)

# 把所有表删除
# Base.metadata.drop_all(engine)

5.2 增加和基于对象的跨表查询

from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import scoped_session
from models2 import Girl, Boy, Boy2Girl

engine = create_engine("mysql+pymysql://[email protected]:3306/aaa")
Session = sessionmaker(bind=engine)
session = scoped_session(Session)

# 新增
# 1 笨办法新增
# girl=Girl(name='刘亦菲')
# boy=Boy(name='彭于晏')
# session.add_all([girl,boy])
# session.add(Boy2Girl(girl_id=1,boy_id=1))
# session.commit()

# 2 使用relationship
# boy = Boy(name='lqz')
# boy.girls = [Girl(name='迪丽热巴'), Girl(name='景田')]
# session.add(boy)
# session.commit()


# 基于对象的跨表查询
# 正向
# boy = session.query(Boy).filter(Boy.id==2).first()
# print(boy.girls)

# 反向
# girl = session.query(Girl).filter(Girl.id==2).first()
# print(girl.boys)


# 如果没有relationship,纯自己操作



# 基于连表的查询(一会讲)

6 连表查询

### 关联关系,基于连表的跨表查询
from models1 import Person,Hobby
# 链表操作
# select * from person,hobby where person.hobby_id=hobby.id;
# res = session.query(Person, Hobby).filter(Person.hobby_id == Hobby.id).all()

# 自己连表查询
# join表,默认是inner join,自动按外键关联
# select * from Person inner join Hobby on Person.hobby_id=Hobby.id;
# res = session.query(Person).join(Hobby).all()

#isouter=True 外连,表示Person left join Favor,没有右连接,反过来即可
# select * from Person left join Hobby on Person.hobby_id=Hobby.id;
# res = session.query(Person).join(Hobby, isouter=True).all()
# 没有right join,通过这个实现
# res = session.query(Hobby).join(Person, isouter=True).all()

# # 自己指定on条件(连表条件),第二个参数,支持on多个条件,用and_,同上
# select * from Person left join Hobby on Person.id=Hobby.id;
# res = session.query(Person).join(Hobby, Person.hobby_id == Hobby.id, isouter=True) #  sql本身有问题,只是给你讲, 自己指定链接字段
# 右链接
# print(res)



# 多对多关系连表
# 多对多关系,基于链表的跨表查
#方式一:直接连
res = session.query(Boy, Girl,Boy2Girl).filter(Boy.id == Boy2Girl.boy_id,Girl.id == Boy2Girl.girl_id).all()
# 方式二:join连
res = session.query(Boy).join(Boy2Girl).join(Girl).filter(Person.id>=2).all()

标签:sqlalchemy,name,res,连表,session,User,query,id
From: https://www.cnblogs.com/bnmm/p/17303447.html

相关文章

  • Docker容器执行su命令报错su: cannot open session: Permission denied 解决方法
    1、先检查su命令权限是否正确,执行如下命令ll/etc/pam.d/su如果现实如图,则说明权限方面没问题,若您的执行结果与我的不一样,需调整权限。[root@blog-tag-gg~]#ll/etc/pam.d/su-rw-r--r--1rootroot5402月32021/etc/pam.d/su2、执行如下命令将如下。将su文......
  • flask之信号,flask-script,sqlalchemy介绍和快速使用,创建操作数据表
    目录flask之信号,flask-script,sqlalchemy介绍和快速使用,创建操作数据表昨日回顾今日内容详细1信号1.2django信号2flask-script3sqlalchemy快速使用4使用sqlalchemy创建操作数据库补充flask之信号,flask-script,sqlalchemy介绍和快速使用,创建操作数据表昨日回顾#1local对象......
  • 数据库sqlalchemy
    sqlalchemy是一个基于python的orm框架,可以让我们在python中可以使用sql操作数据库flask中没有orm框架都是使用sqlalchemy作为操作数据库表的模块fastapi也是使用的sqlchemy1.安装pip3.8installsqlalchemy#sqlalchemy本身是无法操作数据库的,必须要使用pymysql一起......
  • 信号,flask-script,sqlalchemy 快速使用
    信号,flask-script,sqlalchemy快速使用信号#Flask框架中的信号基于blinker(安装这个模块),其主要就是让开发者可是在flask请求过程中定制一些用户行为flask和django都有#观察者模式,又叫发布-订阅(Publish/Subscribe)23种设计模式之一pip3.8installblinker#信号:signi......
  • Flask框架 之Flask-session
    flask-session是flask框架的session组件,由于原来flask内置session使用签名cookie保存,该组件则将支持session保存到多个地方一、filesystemfromflaskimportFlask,sessionfromflask_sessionimportSessionapp=Flask(__name__)app.secret_key="Yang"app.config[......
  • flask_day05:信号 Django信号 flask-script sqlalchemy 创建操作数据表
    目录回顾信号比如:用户表新增一条记录时,就记录一下日志内置信号:flask少一些,Django多一些使用内置信号量的步骤自定义信号Django信号django中使用内置信号flask-script自定制命令sqlalchemy快速使用原生操作的快速使用创建操作数据表鲁棒性链路,链路追踪,上下游,大的单体应用,上游还......
  • flask-sqlalchemy
    1.sqlalchemy快速使用flask中没有orm框架。我们需要使用一个对象关系映射来操作数据库。sqlalchemy就是其中之一。SQLAlchemy是一个基于Python实现的ORM框架。该框架建立在DBAPI之上,使用关系对象映射进行数据库操作,简言之便是:将类和对象转换成SQL,然后使用数据API执行SQL并获取......
  • Flask框架之信号、sqlalchemy
    目录信号flask-scriptsqlalchemysqlalchemy介绍sqlalchemy快速使用sqlalchemy创建表和操作数据信号Flask框架中的信号基于blinker(安装这个模块pipinstallblinker),其主要就是让开发者可是在flask请求过程中定制一些用户行为,flask和django都有信号观察者模式,又叫发布-订阅(Pu......
  • flask-day5——python项目高并发异步部署、uwsgi启动python的web项目不要使用全局变量
    目录一、python项目高并发异步部署二、uwsgi启动Python的Web项目中不要使用全局变量三、信号3.1flask信号3.2django信号四、微服务的概念五、flask-script六、sqlalchemy快速使用七、sqlalchemy快速使用4.1原生操作的快速使用八、创建操作数据表九、作业1、什么是猴子补丁,有什......
  • sqlalchemy
    信号Flask框架中的信号基于blinker(安装这个模块),其主要就是让开发者可是在flask请求过程中定制一些用户行为flask和django都有#观察者模式,又叫发布-订阅(Publish/Subscribe)23种设计模式之一安装:pip3.8installblinker信号:signial翻译过来的,并发编程中学过信号量Se......