首页 > 数据库 >【LeetCode】学习计划——SQL入门

【LeetCode】学习计划——SQL入门

时间:2023-01-12 14:33:26浏览次数:67  
标签:入门 int LeetCode SQL date 主键 id select name

Day1 选择

595. 大的国家

World表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| name        | varchar |
| continent   | varchar |
| area        | int     |
| population  | int     |
| gdp         | int     |
+-------------+---------+
name 是这张表的主键。
这张表的每一行提供:国家名称、所属大陆、面积、人口和 GDP 值

选择出:

  1. 面积至少为 300 万平方公里(即,\(3000000\ km^2\)),或者
  2. 人口至少为 2500 万(即 \(25000000\))

方法一

两个条件一起查询:

select name, population, area 
from World 
where area >= 3000000 or population >= 25000000;

方法二

使用union连接两个查询条件:

select name, population, area
from world
where area >= 3000000
union
select name, population, area
from world
where population >= 25000000;

Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序; 即:去重+排序

Union All:对两个结果集进行并集操作,包括重复行,不进行排序; 即:不去重+不排序

1757. 可回收且低脂的产品

Products表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| product_id  | int     |
| low_fats    | enum    |
| recyclable  | enum    |
+-------------+---------+
product_id 是这个表的主键。
low_fats 是枚举类型,取值为以下两种 ('Y', 'N'),其中 'Y' 表示该产品是低脂产品,'N' 表示不是低脂产品。
recyclable 是枚举类型,取值为以下两种 ('Y', 'N'),其中 'Y' 表示该产品可回收,而 'N' 表示不可回收。
select product_id
from products
where low_fats = 'Y' and recyclable = 'Y';

584. 寻找用户推荐人

+------+------+-----------+
| id   | name | referee_id|
+------+------+-----------+
|    1 | Will |      NULL |
|    2 | Jane |      NULL |
|    3 | Alex |         2 |
|    4 | Bill |      NULL |
|    5 | Zack |         1 |
|    6 | Mark |         2 |
+------+------+-----------+

MySQL有三个逻辑值:TRUE, FALSE, NULL

所以这个题如果直接选择 referee_id != 2,则会导致 referee_id = NULL的数据没有被选择出来,所以要加上 referee_id is null

select name
from customer
where referee_id != 2 or referee_id is null;

还有一种方法是先选出来编号为2的元素然后取反:

<=>运算符相当于封装了= 和 is ,既可以判断 非NULL值,也可以用来判断NULL值。只能在MySQL中使用

select name
from customer
where not referee_id <=> 2;

或者使用 not in

select name
from customer
where id not in (select id from customer where referee_id = 2);
# id是主键,所以选择referee_id等于2的id然后取反

183. 从不订购的客户

Customers 表:

+----+-------+
| Id | Name  |
+----+-------+
| 1  | Joe   |
| 2  | Henry |
| 3  | Sam   |
| 4  | Max   |
+----+-------+

Orders 表:

+----+------------+
| Id | CustomerId |
+----+------------+
| 1  | 3          |
| 2  | 1          |
+----+------------+

注意要对name重命名为Customers

select customers.name as 'Customers'
from customers
where customers.id not in(select CustomerId from orders);

使用左连接

select Customers.name as 'Customers'
from Customers
left join orders
on Customers.id = orders.CustomerId
where orders.CustomerId is null;

Day2 排序&修改

1873. 计算特殊奖金

Employees表:

+-------------+---------+
| 列名        | 类型     |
+-------------+---------+
| employee_id | int     |
| name        | varchar |
| salary      | int     |
+-------------+---------+
employee_id 是这个表的主键。
此表的每一行给出了雇员id ,名字和薪水。

使用CASE

case配合when,then

when后面是条件,then后面是返回的结果

select employee_id,
(
    case 
        when mod(employee_id, 2) != 0 and left(name, 1) != 'M' then salary
        else 0
    end
) as bonus
from Employees
order by employee_id;

使用IF

IF有三个参数,第一个是判断条件,第二个是条件成立的返回值,第三个是条件不成立的返回值

select employee_id,
if(mod(employee_id, 2) != 0 and left(name, 1) != 'M', salary, 0) as bonus
from Employees
order by employee_id;

使用LIKE

使用LIKE进行匹配:

'%a'	//以a结尾的数据
'a%'	//以a开头的数据
'%a%'	//含有a的数据
'_a_'	//三位且中间字母是a的
'_a'	//两位且结尾字母是a的
'a_'	//两位且开头字母是a的
select employee_id,
if(mod(employee_id, 2) = 0 or name like 'M%', 0, salary) as bonus
from Employees
order by employee_id;

627. 变更性别

要求只使用单个 update 语句 ,且不产生中间临时表。

Salary 表:

+-------------+----------+
| Column Name | Type     |
+-------------+----------+
| id          | int      |
| name        | varchar  |
| sex         | ENUM     |
| salary      | int      |
+-------------+----------+
id 是这个表的主键。
sex 这一列的值是 ENUM 类型,只能从 ('m', 'f') 中取。
本表包含公司雇员的信息。

使用IF

update Salary 
set sex = if(sex = 'f', 'm', 'f');

使用CASE

update Salary 
set sex = 
case
    when sex = 'f' then 'm'
    else 'f'
end;

196. 删除重复的电子邮箱

题目要求不使用SELECT语句

Person表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| id          | int     |
| email       | varchar |
+-------------+---------+
id是该表的主键列。
该表的每一行包含一封电子邮件。电子邮件将不包含大写字母。

题解链接

delete p1表示从p1表中删除满足where条件的记录

# Please write a DELETE statement and DO NOT write a SELECT statement.
# Write your MySQL query statement below
delete p1
from Person p1, Person p2
where p1.email = p2.email and p1.id > p2.id;

使用SELECT和GROUP BY:

delete from Person
where id not in(
    select * from(select min(id) from Person group by email) t
);

Day3 字符串处理函数/正则

1667. 修复表中的名字

Users表:

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| name           | varchar |
+----------------+---------+
user_id 是该表的主键。
该表包含用户的 ID 和名字。名字仅由小写和大写字符组成。

CONCAT函数用来拼接两个字符串,使用 UPPERLOWER来对name进行变换,然后拼接起来

select user_id, concat(upper(left(name, 1)), lower(substring(name, 2))) as name
from Users
order by user_id;

1484. 按日期分组销售产品

Activities表:

+-------------+---------+
| 列名         | 类型    |
+-------------+---------+
| sell_date   | date    |
| product     | varchar |
+-------------+---------+
此表没有主键,它可能包含重复项。
此表的每一行都包含产品名称和在市场上销售的日期。

group by sell_date将产品按日期统计起来,然后使用 count进行计数,使用 group_concat将产品名拼接起来

select sell_date,
count(distinct(product)) as num_sold,
group_concat(distinct product order by product asc separator ',') as products
from Activities
group by sell_date;

1527. 患某种疾病的患者

患者信息表: Patients

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| patient_id   | int     |
| patient_name | varchar |
| conditions   | varchar |
+--------------+---------+
patient_id (患者 ID)是该表的主键。
'conditions' (疾病)包含 0 个或以上的疾病代码,以空格分隔。
这个表包含医院中患者的信息。

用like匹配,注意两种情况:

  1. DIAB1在第一个,这时候用 DIAN1%匹配
  2. DIAB1不在第一个,此时要在用 % DIAB1%匹配,注意前面有个空格
select patient_id, patient_name, conditions
from Patients
where conditions like 'DIAB1%' or conditions like '% DIAB1%';

Day4 组合查询 & 指定选取

1965. 丢失信息的雇员

表: Employees

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| name        | varchar |
+-------------+---------+
employee_id 是这个表的主键。
每一行表示雇员的id 和他的姓名。

表: Salaries

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| employee_id | int     |
| salary      | int     |
+-------------+---------+
employee_id is 这个表的主键。
每一行表示雇员的id 和他的薪水。

使用 union all来连接两个查询结果,通过 group by进行将employee_id进行聚合,使用 having count()选择仅出现一次的id

UNIONUNION ALL的区别:前者会在连接后进行去重操作;后者不会去重,把查询出来的所有结果一起返回

select employee_id
from(
    select employee_id from Employees
    union all
    select employee_id from Salaries
) as t
group by employee_id
having count(*) = 1
order by employee_id asc;

1795. 每个产品在不同商店的价格

表:Products

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| product_id  | int     |
| store1      | int     |
| store2      | int     |
| store3      | int     |
+-------------+---------+
这张表的主键是product_id(产品Id)。
每行存储了这一产品在不同商店store1, store2, store3的价格。
如果这一产品在商店里没有出售,则值将为null。

将查询出来的 store{1,2,3}都重命名为 store,然后使用 union将三个查询连接起来

select product_id, 'store1' as store, store1 price from Products where store1 is not null
union
select product_id, 'store2' as store, store2 price from Products where store2 is not null
union
select product_id, 'store3' as store, store3 price from Products where store3 is not null;

608. 树节点

给定一个表 tree,id 是树节点的编号, p_id 是它父节点的 id 。

+----+------+
| id | p_id |
+----+------+
| 1  | null |
| 2  | 1    |
| 3  | 1    |
| 4  | 2    |
| 5  | 2    |
+----+------+

使用CASE

如果 p_id为null,则节点为根节点

如果 idp_id里出现过,则为内部节点

没出现过的为叶子

select t.id, (
    case
    when t.p_id is null then 'Root'
    when (
        select count(*)
        from tree t1 where t1.p_id = t.id
    ) > 0 then 'Inner'
    else 'Leaf'
    end
) as type
from tree as t;

使用LEFT JOIN

idp_id进行左连接

如果 t1.p_id是空,则该节点是根节点

如果 t2.p_id是空,则说明 id没有在 p_id中出现过,即该节点是叶子

否则,是内部节点

select distinct t1.id, (
    if(isnull(t1.p_id), 'Root', if(isnull(t2.p_id), 'Leaf', 'Inner'))
) as type
from tree t1
left join
tree t2 on t1.id = t2.p_id;

176. 第二高的薪水

Employee 表:

+-------------+------+
| Column Name | Type |
+-------------+------+
| id          | int  |
| salary      | int  |
+-------------+------+
id 是这个表的主键。
表的每一行包含员工的工资信息。

方法二和方法三注意使用 DISTINCT去重,因为最高的薪水可能不止一个

方法一

从去除掉最大薪水的剩余表中查询最大薪水

select max(salary) as SecondHighestSalary 
from Employee
where salary not in (select max(salary) from Employee);

方法二

使用 limitoffset

offset表示要跳过的数据的数量

如果查询到的数据为空,用 ifnull将空数据变为null

select ifnull
(
    (
        select distinct salary
        from Employee
        order by salary desc
        limit 1 offset 1
    ), null
) as SecondHighestSalary;

方法三

使用临时表解决没有第二高工资的情况,对临时表进行选择,如果临时表是空表的话会返回null

select(
    select distinct salary
    from Employee
    order by salary desc
    limit 1 offset 1
) as SecondHighestSalary;

Day5 合并

LEFT JOIN从左表(table1)返回所有的行,即使右表(table2)中没有匹配。如果右表中没有匹配,则结果为 NULL。

语法示例:

SELECT column_name(s)
FROM table1
LEFT JOIN table2
ON table1.column_name=table2.column_name;

175. 组合两个表

表: Person

+-------------+---------+
| 列名         | 类型     |
+-------------+---------+
| PersonId    | int     |
| FirstName   | varchar |
| LastName    | varchar |
+-------------+---------+
personId 是该表的主键列。
该表包含一些人的 ID 和他们的姓和名的信息。

表: Address

+-------------+---------+
| 列名         | 类型    |
+-------------+---------+
| AddressId   | int     |
| PersonId    | int     |
| City        | varchar |
| State       | varchar |
+-------------+---------+
addressId 是该表的主键列。
该表的每一行都包含一个 ID = PersonId 的人的城市和州的信息。

直接使用左连接即可

select firstName, lastName, city, state
from Person
left join Address
on Person.personId = Address.personId;

1581. 进店却未进行过交易的顾客

表:Visits

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| visit_id    | int     |
| customer_id | int     |
+-------------+---------+
visit_id 是该表的主键。
该表包含有关光临过购物中心的顾客的信息。

表:Transactions

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| transaction_id | int     |
| visit_id       | int     |
| amount         | int     |
+----------------+---------+
transaction_id 是此表的主键。
此表包含 visit_id 期间进行的交易的信息。

使用左连接将 Visits表和 Transactions表连接,然后查询连接后的表里有多少个null

select customer_id, count(*) count_no_trans
from Visits v
left join
Transactions t on v.visit_id = t.visit_id
where amount is null
group by customer_id;

1148. 文章浏览 I

Views 表:

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| article_id    | int     |
| author_id     | int     |
| viewer_id     | int     |
| view_date     | date    |
+---------------+---------+
此表无主键,因此可能会存在重复行。
此表的每一行都表示某人在某天浏览了某位作者的某篇文章。
请注意,同一人的 author_id 和 viewer_id 是相同的。

使用 DISTINCTGROUP BY均可

select distinct author_id as id
from Views
where author_id = viewer_id
# group by id
order by id asc;

Day6 合并

197. 上升的温度

表: Weather

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| recordDate    | date    |
| temperature   | int     |
+---------------+---------+
id 是这个表的主键
该表包含特定日期的温度信息

使用 DATEDIFF函数来判断两个日期的差值

可以使用 INNER JOIN连接,也可以直接select两个表:

select today.id
from 
Weather today,
Weather yesterday
# 或者:
# Weather today
# inner join Weather yesterday
where datediff(today.recordDate, yesterday.recordDate) = 1 and today.Temperature > yesterday.Temperature;

607. 销售员

表: SalesPerson

+-----------------+---------+
| Column Name     | Type    |
+-----------------+---------+
| sales_id        | int     |
| name            | varchar |
| salary          | int     |
| commission_rate | int     |
| hire_date       | date    |
+-----------------+---------+
sales_id 是该表的主键列。
该表的每一行都显示了销售人员的姓名和 ID ,以及他们的工资、佣金率和雇佣日期。

使用 WHERE一直嵌套

select S.name as name
from SalesPerson S
where S.sales_id not in 
(
    select O.sales_id
    from Orders O
    where O.com_id in
    (
        select C.com_id
        from Company C
        where C.name = 'RED'
    )
);

1141. 查询近30天活跃用户数

活动记录表:Activity

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
该表是用户在社交网站的活动记录。
该表没有主键,可能包含重复数据。
activity_type 字段为以下四种值 ('open_session', 'end_session', 'scroll_down', 'send_message')。
每个 session_id 只属于一个用户。

注意是 distinct user_id,因为 一个用户可能会对应多个 session_iddatediff的时候要注意不小于0

select activity_date as day, count(distinct user_id) as active_users
from Activity
where datediff('2019-07-27', activity_date) < 30 and datediff('2019-07-27', activity_date) >= 0
group by activity_date;

Day7 统计去重

1141. 查询近30天活跃用户数

活动记录表:Activity

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user_id       | int     |
| session_id    | int     |
| activity_date | date    |
| activity_type | enum    |
+---------------+---------+
该表是用户在社交网站的活动记录。
该表没有主键,可能包含重复数据。
activity_type 字段为以下四种值 ('open_session', 'end_session', 'scroll_down', 'send_message')。
每个 session_id 只属于一个用户。

注意是 distinct user_id,因为 一个用户可能会对应多个 session_iddatediff的时候要注意不小于0

select activity_date as day, count(distinct user_id) as active_users
from Activity
where datediff('2019-07-27', activity_date) < 30 and datediff('2019-07-27', activity_date) >= 0
group by activity_date;

1693. 每天的领导和合伙人

表:DailySales

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| date_id     | date    |
| make_name   | varchar |
| lead_id     | int     |
| partner_id  | int     |
+-------------+---------+
该表没有主键。
该表包含日期、产品的名称,以及售给的领导和合伙人的编号。
名称只包含小写英文字母。
select date_id, make_name, count(distinct lead_id) as unique_leads, count(distinct partner_id) as unique_partners
from DailySales
group by date_id, make_name;

1729. 求关注者的数量

表: Followers

+-------------+------+
| Column Name | Type |
+-------------+------+
| user_id     | int  |
| follower_id | int  |
+-------------+------+
(user_id, follower_id) 是这个表的主键。
该表包含一个关注关系中关注者和用户的编号,其中关注者关注用户。
select user_id, count(follower_id) as followers_count
from Followers
group by user_id
order by user_id asc;

Day8 计算函数

586. 订单最多的客户

表: Orders

+-----------------+----------+
| Column Name     | Type     |
+-----------------+----------+
| order_number    | int      |
| customer_number | int      |
+-----------------+----------+
Order_number是该表的主键。
此表包含关于订单ID和客户ID的信息。

降序排序后用 limit 1选择出来第一个值,就是订单最多的用户

select customer_number
from Orders
group by customer_number
order by count(*) desc
limit 1;

511. 游戏玩法分析 I

活动表 Activity:

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| player_id    | int     |
| device_id    | int     |
| event_date   | date    |
| games_played | int     |
+--------------+---------+
表的主键是 (player_id, event_date)。
这张表展示了一些游戏玩家在游戏平台上的行为活动。
每行数据记录了一名玩家在退出平台之前,当天使用同一台设备登录平台后打开的游戏的数目(可能是 0 个)。

player_id进行分组,然后选择出每个id的最小的 event_date

使用排序后时间会比不用排序直接去最小值快将近100ms,chatgpt给出的解释是:

MySQL 中先排序再取最小值可能会变快的原因是,在数据表中有索引的情况下,如果在排序之前就取最小值,MySQL 的引擎会扫描整个表并在内存中对所有行进行排序,而如果先排序再取最小值,MySQL 的引擎只需要扫描索引并返回第一个索引值即可。

这个表现差异更明显的是在排序字段上有索引的情况下.
在这种情况下,MySQL 的引擎可以使用索引进行排序,而无需在内存中对所有行进行排序。因此查询速度会显著加快.

select player_id, min(event_date) as first_login
from Activity
group by player_id
order by event_date asc;

1890. 2020年最后一次登录

表: Logins

+----------------+----------+
| 列名           | 类型      |
+----------------+----------+
| user_id        | int      |
| time_stamp     | datetime |
+----------------+----------+
(user_id, time_stamp) 是这个表的主键。
每一行包含的信息是user_id 这个用户的登录时间。

user_id进行分组,选出在2020年的最大登录时间

select user_id, max(time_stamp) as last_stamp
from Logins
where time_stamp between '2020-01-01 0:0:0' and '2020-12-31 23:59:59'
group by user_id;

1741. 查找每个员工花费的总时间

表: Employees

+-------------+------+
| Column Name | Type |
+-------------+------+
| emp_id      | int  |
| event_day   | date |
| in_time     | int  |
| out_time    | int  |
+-------------+------+
(emp_id, event_day, in_time) 是这个表的主键。
该表显示了员工在办公室的出入情况。
event_day 是此事件发生的日期,in_time 是员工进入办公室的时间,而 out_time 是他们离开办公室的时间。
in_time 和 out_time 的取值在1到1440之间。
题目保证同一天没有两个事件在时间上是相交的,并且保证 in_time 小于 out_time。
select event_day as day, emp_id, sum(out_time - in_time) as total_time
from Employees
group by emp_id, event_day;

Day9 控制流

1393. 股票的资本损益

Stocks 表:

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| stock_name    | varchar |
| operation     | enum    |
| operation_day | int     |
| price         | int     |
+---------------+---------+
(stock_name, day) 是这张表的主键
operation 列使用的是一种枚举类型,包括:('Sell','Buy')
此表的每一行代表了名为 stock_name 的某支股票在 operation_day 这一天的操作价格。
保证股票的每次'Sell'操作前,都有相应的'Buy'操作。

if判断一下,用 case也可以

select stock_name, sum(
    if(operation = 'Buy', -1 * price, price)
) as capital_gain_loss
from Stocks
group by stock_name;

1407. 排名靠前的旅行者

表:Users

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| id            | int     |
| name          | varchar |
+---------------+---------+
id 是该表单主键。
name 是用户名字。

ifnull来将null变为0,order by可以排序多个字段

select name, ifnull(sum(distance), 0) as travelled_distance
from Users
left join
Rides on Users.id = Rides.user_id
group by user_id
order by travelled_distance desc, name asc;

1158. 市场分析 I

Table: Users

+----------------+---------+
| Column Name    | Type    |
+----------------+---------+
| user_id        | int     |
| join_date      | date    |
| favorite_brand | varchar |
+----------------+---------+
此表主键是 user_id。
表中描述了购物网站的用户信息,用户可以在此网站上进行商品买卖。

Table: Orders

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| order_id      | int     |
| order_date    | date    |
| item_id       | int     |
| buyer_id      | int     |
| seller_id     | int     |
+---------------+---------+
此表主键是 order_id。
外键是 item_id 和(buyer_id,seller_id)。

Table: Items

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| item_id       | int     |
| item_brand    | varchar |
+---------------+---------+
此表主键是 item_id。

Items表是没有用的。

首先从 Orders表中选出在2019年买过商品的 buyer_id,然后用 group by分组,统计出来每个人买的次数,然后和 Users表进行连接

select user_id as buyer_id, join_date, ifnull(orders_in_2019, 0) as orders_in_2019
from Users as U
left join(
    select buyer_id, count(*) as orders_in_2019
    from Orders as O
    where O.order_date between '2019-01-01' and '2019-12-31'
    group by buyer_id
) as t
on t.buyer_id = U.user_id;

Day10 过滤

182. 查找重复的电子邮箱

编写一个 SQL 查询,查找 Person 表中所有重复的电子邮箱。

示例:

+----+---------+
| Id | Email   |
+----+---------+
| 1  | [email protected] |
| 2  | [email protected] |
| 3  | [email protected] |
+----+---------+

使用GROUP BY

select Email
from(
    select Email, count(*) as cnt
    from Person
    group by Email
) as t
where t.cnt > 1;

使用GROUP BY和HAVING

select Email
from Person
group by Email
having count(*) > 1;

1050. 合作过至少三次的演员和导演

ActorDirector 表:

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| actor_id    | int     |
| director_id | int     |
| timestamp   | int     |
+-------------+---------+
timestamp 是这张表的主键.

使用GROUP BY和HAVING

select actor_id, director_id
from ActorDirector
group by actor_id, director_id
having count(*) >= 3;

1587. 银行账户概要 II

表: Users

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| account      | int     |
| name         | varchar |
+--------------+---------+
account 是该表的主键.
表中的每一行包含银行里中每一个用户的账号.

表: Transactions

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| trans_id      | int     |
| account       | int     |
| amount        | int     |
| transacted_on | date    |
+---------------+---------+
trans_id 是该表主键.
该表的每一行包含了所有账户的交易改变情况.
如果用户收到了钱, 那么金额是正的; 如果用户转了钱, 那么金额是负的.
所有账户的起始余额为 0.

使用左连接将两个表连接起来,然后对 account进行分组,计算账户余额,最后用 having选出余额大于一万的账户

select name,sum(amount) as balance
from Users as U
left join
Transactions as T
on U.account = T.account
group by T.account
having balance > 10000;

1084. 销售分析III

Table: Product

+--------------+---------+
| Column Name  | Type    |
+--------------+---------+
| product_id   | int     |
| product_name | varchar |
| unit_price   | int     |
+--------------+---------+
Product_id是该表的主键。
该表的每一行显示每个产品的名称和价格。

Table: Sales

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| seller_id   | int     |
| product_id  | int     |
| buyer_id    | int     |
| sale_date   | date    |
| quantity    | int     |
| price       | int     |
+------ ------+---------+
这个表没有主键,它可以有重复的行。
product_id 是 Product 表的外键。
该表的每一行包含关于一个销售的一些信息。

注意是产品的所有销售时间都在第一个季度,所以要判断销售时间的最大值和最小值均在第一季度

select P.product_id, P.product_name
from Product as P
left join
Sales as S on S.product_id = P.product_id
group by S.product_id
having (min(S.sale_date) between '2019-01-01' and '2019-03-31') and  (max(S.sale_date) between '2019-01-01' and '2019-03-31')

标签:入门,int,LeetCode,SQL,date,主键,id,select,name
From: https://www.cnblogs.com/Friends-A/p/17046597.html

相关文章

  • [LeetCode] 1326. Minimum Number of Taps to Open to Water a Garden 灌溉花园的最少
    Thereisaone-dimensionalgardenonthex-axis.Thegardenstartsatthepoint 0 andendsatthepoint n.(i.eThelengthofthegardenis n).Thereare......
  • SQL228 批量插入数据
    SQL228批量插入数据题目描述请你对于表actor批量插入如下数据(不能有2条insert语句哦!)方法对表批量插入数据。Mysqlinsertinto表名values(v1,v2,..),values(v1,......
  • 快速入门前端图表插件E-chart
    在前端项目开发中,有很多地方会遇到绘制图表的需求,一般的图表可以通过canvas来绘制,但是遇到复杂一点的图表怎么办呢?而且黑马的课程大纲已经把canvas课程删掉了,既然canvas有用......
  • 存储过程动态sql执行
    DELIMITER$$USE`test`$$DROPPROCEDUREIFEXISTS`Prc_TelSuccess_Snapshot_Update`$$CREATEDEFINER=`ccstest`@`%`PROCEDURE`Prc_TelSuccess_Snapshot_Update......
  • MySQL8.0自适应参数innodb_dedicated_server
    MySQL8.0有了一个新参数又叫自适应参数 innodb_dedicated_server将innodb_dedicated_server开启的时候,它可以自动的调整下面这四个参数的值:1.innodb_buffer_pool_size......
  • 工作中一些sqlserver函数运用
         ......
  • PLSQL Developer 12安装
    一、准备软件版本下载地址PLSQLDeveloper12.0.7https://www.allroundautomations.com/files/plsqldev1207x64.msiPLSQLDeveloper汉化包12.0https://www.......
  • sqlserver 分页
     随便记一下  直接利用row_number()over(orderbyid)函数计算出行数,选定相应行数返回即可,不过该关键字只有在SQLserver2005版本以上才有。setstatisticstime......
  • FreeBSD环境中源码部署Snort+Barnyard2+MySQL+BASE
        在2019年发布的文章《手动打造Snort+barnyard2+BASE可视化报警平台》,目前已有20K+的浏览量,帮助了很多想深入了解Snort而又无法独立安装系统的同学遇到的各种困惑......
  • 1、amis-快速入门
    目录1、下载2、使用3、完整的代码1、下载打开网址amis网址:aims点击发行版,跳转至下载页面下载2、使用将下载下来的压缩包,解压到sdk的文件夹内,并在项目中......