摘要:该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。
本文分享自华为云社区《基于ModelArts实现Text2SQL》,作者:HWCloudAI。
M-SQL: Multi-Task Representation Learning for Single-Table Text2sql Generation
虽然之前对 Text2SQL 的研究提供了一些可行的解决方案,但大多数都是基于列表示提取值。如果查询中有多个值,并且这些值属于不同的列,则以前基于列表示的方法无法准确提取值。该论文提出了一种基于预训练 BERT 的新神经网络架构,称为 M-SQL。基于列的值提取分为值提取和值列匹配两个模块。
论文地址:https://ieeexplore.ieee.org/document/9020099
注意事项:
1.本案例使用框架:PyTorch1.4.0
2.本案例使用硬件:GPU: 1*NVIDIA-V100NV32(32GB) | CPU: 8 核 64GB
3.运行代码方法: 点击本页面顶部菜单栏的三角形运行按钮或按Ctrl+Enter键 运行每个方块中的代码
4.JupyterLab的详细用法: 请参考《ModelAtrs JupyterLab使用指导》
5.碰到问题的解决办法: 请参考《ModelAtrs JupyterLab常见问题解决办法》
1.下载代码和数据集
运行下面代码,进行数据和代码的下载和解压缩
使用TableQA数据集,数据位于m-sql/TableQA/中
import os # 数据代码下载 !wget https://obs-aigallery-zc.obs.cn-north-4.myhuaweicloud.com/algorithm/m-sql.zip # 解压缩 os.system('unzip m-sql.zip -d ./') os.chdir('./m-sql')
2.训练
2.1安装依赖库
!pip install -r pip-requirements.txt
2.2训练所需参数和函数
import os import argparse import shutil import sqlite3 import time import tqdm import torch import random as python_random from transformers import BertTokenizer, BertModel import logging import numpy as np from model import Loss_sw_se, Seq2SQL_v1 # import moxing as mox from sql_utils.utils_tableqa import load_tableqa, get_loader, get_fields, get_g, get_g_wvi, get_wemb_bert, \ pred_sw_se, convert_pr_wvi_to_string, generate_sql_i, extract_val, normalize_sql, get_acc, get_acc_x, \ save_for_evaluation, load_tableqa_data device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def construct_hyper_param(parser): parser.add_argument("--eval", default='False', type=str) parser.add_argument("--no_save", default='False', type=str) parser.add_argument("--toy_model", default='False', type=str) parser.add_argument("--toy_size", default=16, type=int) parser.add_argument('--tepoch', default=1, type=int) parser.add_argument('--print_per_step', default=50, type=int) parser.add_argument("--bS", default=32, type=int, help="Batch size") parser.add_argument("--accumulate_gradients", default=1, type=int, help="The number of accumulation of backpropagation to effectivly increase the batch size.") parser.add_argument('--fine_tune', default='False', type=str, help="If present, BERT is trained.") parser.add_argument("--data_url", default='./TableQA', type=str, help="Saving path of model file, logfile and result file.") parser.add_argument("--train_url", default='./data_and_model/', type=str, help="Saving path of model file, logfile and result file.") parser.add_argument("--vocab_file", default='vocab.txt', type=str, help="The vocabulary file that the BERT model was trained on.") parser.add_argument("--max_seq_length", default=512, type=int, help="The maximum total input sequence length after WordPiece tokenization. Sequences ") parser.add_argument("--num_target_layers", default=1, type=int, help="The Number of final layers of BERT to be used in downstream task.") parser.add_argument('--lr_bert', default=1e-5, type=float, help='BERT model learning rate.') parser.add_argument('--seed', type=int, default=1, help="random seed for initialization") parser.add_argument('--do_lower_case', default='False', type=str, help='whether to use lower case.') parser.add_argument("--bert_url", default='./pre-trained_weights/chinese_wwm_ext_pytorch/', type=str, help="Path or model name of BERT") parser.add_argument("--load_weight", default='./trained_model/model/best_model.pth', type=str, help="model path to load") parser.add_argument('--dr', default=0, type=float, help="Dropout rate.") parser.add_argument('--lr', default=1e-3, type=float, help="Learning rate.") parser.add_argument('--num_warmup_steps', default=-1, type=int, help="num_warmup_steps") parser.add_argument("--split", default='val', type=str, help='prefix of jsonl and db files') args, _ = parser.parse_known_args() python_random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) args.do_lower_case = args.do_lower_case == 'True' args.fine_tune = args.fine_tune == 'True' args.no_save = args.no_save == 'True' args.eval = args.eval == 'True' args.toy_model = args.toy_model == 'True' return args def get_bert(bert_path): tokenizer = BertTokenizer.from_pretrained(bert_path) model_bert = BertModel.from_pretrained(bert_path) bert_config = model_bert.config model_bert.to(device) return model_bert, tokenizer, bert_config def update_lr(param_groups, current_step, num_warmup_steps, start_lr): if current_step <= num_warmup_steps: warmup_frac_done = current_step / num_warmup_steps new_lr = start_lr * warmup_frac_done for param_group in param_groups: param_group['lr'] = new_lr def get_opt(model, model_bert, fine_tune): if fine_tune: opt = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=0) opt_bert = torch.optim.Adam(filter(lambda p: p.requires_grad, model_bert.parameters()), lr=args.lr_bert, weight_decay=0) else: opt = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=0) opt_bert = None return opt, opt_bert def get_models(args, logger, bert_model, trained=False, path_model=None, eval=False): # some constants if not eval: logger.info(f"Batch_size = {args.bS * args.accumulate_gradients}") logger.info(f"BERT parameters:") logger.info(f"learning rate: {args.lr_bert}") logger.info(f"Fine-tune BERT: {args.fine_tune}") # Get BERT model_bert, tokenizer, bert_config = get_bert(bert_model) iS = bert_config.hidden_size * args.num_target_layers logger.info(bert_config.to_json_string()) # Get Seq-to-SQL if not eval: logger.info(f"Seq-to-SQL: the number of final BERT layers to be used: {args.num_target_layers}") logger.info(f"Seq-to-SQL: learning rate = {args.lr}") model = Seq2SQL_v1(iS, args.dr) model = model.to(device) if trained: assert path_model != None if torch.cuda.is_available(): res = torch.load(path_model) else: res = torch.load(path_model, map_location='cpu') model_bert.load_state_dict(res['model_bert']) model_bert.to(device) model.load_state_dict(res['model']) model.to(device) return model, model_bert, tokenizer, bert_config def get_data(path_wikisql, args): train_data, train_table, dev_data, dev_table = load_tableqa(path_wikisql, args.toy_model, args.toy_size, no_hs_tok=True) train_loader, dev_loader = get_loader(train_data, dev_data, args.bS, shuffle_train=True) return train_data, train_table, dev_data, dev_table, train_loader, dev_loader def train(train_loader, train_table, model, model_bert, opt, bert_config, tokenizer, max_seq_length, num_target_layers, accumulate_gradients, print_per_step, logger, current_step, st_pos=0, opt_bert=None): model.train() model_bert.train() torch.autograd.set_detect_anomaly(True) ave_loss = 0 cnt = 0 for iB, t in enumerate(train_loader): cnt += len(t) if cnt < st_pos: continue # Get fields nlu, nlu_t, sql_i, sql_q, sql_t, tb, hs_t, hds = get_fields(t, train_table, no_hs_t=True, no_sql_t=True) # nlu : natural language utterance # nlu_t: tokenized nlu # sql_i: canonical form of SQL query # sql_q: full SQL query text. Not used. # sql_t: tokenized SQL query # tb : table # hs_t : tokenized headers. Not used. g_sn, g_sc, g_sa, g_wnop, g_wc, g_wo, g_wv = get_g(sql_i) g_wvi, g_tags, g_value_match = get_g_wvi(t, g_wc) wemb_cls, wemb_n, wemb_h, l_n, l_hpu, l_hs, \ nlu_tt, t_to_tt_idx, tt_to_t_idx \ = get_wemb_bert(bert_config, model_bert, tokenizer, nlu_t, hds, max_seq_length, num_out_layers_n=num_target_layers, num_out_layers_h=num_target_layers) l_n_t = [] for t in t_to_tt_idx: l_n_t.append(len(t)) # wemb_n: natural language embedding # wemb_h: header embedding # l_n: token lengths of each question # l_hpu: header token lengths # l_hs: the number of columns (headers) of the tables. # score s_sn, s_sc, s_sa, s_wnop, s_wc, \ s_wo, s_tags, s_match = model(wemb_cls, wemb_n, l_n_t, wemb_h, l_hpu, l_hs, t_to_tt_idx=t_to_tt_idx, g_sn=g_sn, g_sc=g_sc, g_sa=g_sa, g_wo=g_wo, g_wnop=g_wnop, g_wc=g_wc, g_wvi=g_wvi, g_tags=g_tags, g_vm=g_value_match) # Calculate loss & step loss = Loss_sw_se(s_sn, s_sc, s_sa, s_wnop, s_wc, s_wo, s_tags, s_match, g_sn, g_sc, g_sa, g_wnop, g_wc, g_wo, g_tags, g_value_match) if iB % accumulate_gradients == 0: opt.zero_grad() if opt_bert: opt_bert.zero_grad() loss.backward() if accumulate_gradients == 1: update_lr(opt.param_groups, current_step, args.num_warmup_steps, args.lr) opt.step() if opt_bert: update_lr(opt_bert.param_groups, current_step, args.num_warmup_steps, args.lr_bert) opt_bert.step() current_step += 1 elif iB % accumulate_gradients == (accumulate_gradients - 1): loss.backward() update_lr(opt.param_groups, current_step, args.num_warmup_steps, args.lr) opt.step() if opt_bert: update_lr(opt_bert.param_groups, current_step, args.num_warmup_steps, args.lr_bert) opt_bert.step() current_step += 1 else: loss.backward() # statistics ave_loss += loss.item() if iB % print_per_step == 0: log = f'[Train Batch {iB}] ' logs = [] logs.append(f'average loss: {"%.4f" % (ave_loss / cnt,)}') logger.info(log + ', '.join(logs)) if iB == 150: logger.info('暂停训练,如需完整训练删除这个IF分支即可') break ave_loss /= cnt return ave_loss, current_step def test(data_loader, data_table, model, model_bert, bert_config, tokenizer, max_seq_length, num_target_layers, print_per_step, logger, path_db, st_pos=0): model.eval() model_bert.eval() cnt = 0 cnt_sn = 0 cnt_sc = 0 cnt_sa = 0 cnt_wnop = 0 cnt_wc = 0 cnt_wo = 0 cnt_wv = 0 cnt_lx = 0 cnt_x = 0 db_conn = sqlite3.connect(path_db) cursor = db_conn.cursor() results = [] for iB, t in enumerate(data_loader): cnt += len(t) if cnt < st_pos: continue # Get fields nlu, nlu_t, sql_i, sql_q, sql_t, tb, hs_t, hds = get_fields(t, data_table, no_hs_t=True, no_sql_t=True) wemb_cls, wemb_n, wemb_h, l_n, l_hpu, l_hs, \ nlu_tt, t_to_tt_idx, tt_to_t_idx \ = get_wemb_bert(bert_config, model_bert, tokenizer, nlu_t, hds, max_seq_length, num_out_layers_n=num_target_layers, num_out_layers_h=num_target_layers) l_n_t = [] for t in t_to_tt_idx: l_n_t.append(len(t)) # score s_sn, s_sc, s_sa, s_wnop, s_wc, \ s_wo, s_tags, s_match = model(wemb_cls, wemb_n, l_n_t, wemb_h, l_hpu, l_hs, t_to_tt_idx) # prediction pr_sn, pr_sc, pr_sa, pr_wn, pr_conn_op, \ pr_wc, pr_wo, pr_tags, pr_wvi = pred_sw_se(s_sn, s_sc, s_sa, s_wnop, s_wc, s_wo, s_tags, s_match, l_n_t) pr_wv_str = convert_pr_wvi_to_string(pr_wvi, nlu_t) pr_sql_i = generate_sql_i(pr_sc, pr_sa, pr_conn_op, pr_wc, pr_wo, pr_wv_str, nlu) value_indexes, value_nums = extract_val(pr_tags, l_n_t) # Saving for the official evaluation later. for b, pr_sql_i1 in enumerate(pr_sql_i): normalize_sql(pr_sql_i1, tb[b]) results1 = {} results1["sql"] = pr_sql_i1 results1["gold_sql"] = sql_i[b] results1["table_id"] = tb[b]["id"] results1["nlu"] = nlu[b] results1['value_indexes'] = value_indexes[b] results1['value_nums'] = value_nums[b] results1['pr_wc'] = pr_wc[b] sn, sc, sa, co, wn, wc, wo, wv, cond, sql = \ get_acc(sql_i[b], pr_sql_i1, pr_wc[b], pr_wo[b], tb[b], normalized=True) cnt_sn += sn cnt_sc += sc cnt_sa += sa cnt_wnop += (co and wn) cnt_wc += wc cnt_wo += wo cnt_wv += wv cnt_lx += sql results1['correct'] = sql execution, res = get_acc_x(sql_i[b], pr_sql_i1, tb[b], cursor) cnt_x += execution results1['ex_correct'] = execution results1['result'] = res results.append(results1) # print acc cnts = [cnt_sn, cnt_sc, cnt_sa, cnt_wnop, cnt_wc, cnt_wo, cnt_wv, cnt_lx, cnt_x, (cnt_lx + cnt_x) / 2] cnt_desc = [ 's-num', 's-col', 's-col-agg', 'w-num-op', 'w-col', 'w-col-op', 'w-col-value', 'acc_lx', 'acc_x', 'acc_mx' ] if iB % print_per_step == 0: log = f'[Test Batch {iB}] ' logs = [] for k, metric in enumerate(cnts): logs.append(cnt_desc[k] + ': ' + '%.4f' % (metric / cnt,)) logger.info(log + ', '.join(logs)) if iB == 150: logger.info('暂停训练,如需完整训练删除这个IF分支即可') break acc_sn = cnt_sn / cnt acc_sc = cnt_sc / cnt acc_sa = cnt_sa / cnt acc_wnop = cnt_wnop / cnt acc_wc = cnt_wc / cnt acc_wo = cnt_wo / cnt acc_wv = cnt_wv / cnt acc_lx = cnt_lx / cnt acc_x = cnt_x / cnt acc_mx = (acc_lx + acc_x) / 2 acc = [acc_sn, acc_sc, acc_sa, acc_wnop, acc_wc, acc_wo, acc_wv, acc_lx, acc_x, acc_mx] return acc, results, acc_lx def print_result(epoch, acc, dname, logger=None): if logger: logger.info(f'------------ {dname} results ------------') if dname == 'dev': acc_sn, acc_sc, acc_sa, acc_wnop, acc_wc, \ acc_wo, acc_wv, acc_lx, acc_x, acc_mx = acc logger.info( f" Epoch: {epoch}, s-num: {acc_sn:.4f}, s-col: {acc_sc:.4f}," f" s-col-agg: {acc_sa:.4f}, w-num-op: {acc_wnop:.4f}," f" w-col: {acc_wc:.4f}, w-col-op: {acc_wo:.4f}, w-col-value: {acc_wv:.4f}," f" acc_lx: {acc_lx:.4f}, acc_x: {acc_x:.4f}, acc_mx: {acc_mx:.4f}" ) else: logger.info(f" Epoch: {epoch}, average loss: {acc}") def get_logger(log_fp=None): logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(message)s') logger = logging.getLogger(__name__) if log_fp: handler = logging.FileHandler(log_fp) handler.setLevel(logging.INFO) formatter = logging.Formatter('[%(asctime)s] %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) return logger def predict(data_loader, data_table, model, model_bert, bert_config, tokenizer, max_seq_length, num_target_layers, path_db): model.eval() model_bert.eval() results = [] cnt = 0 cnt_sn = 0 cnt_sc = 0 cnt_sa = 0 cnt_wnop = 0 cnt_wc = 0 cnt_wo = 0 cnt_wv = 0 cnt_lx = 0 cnt_x = 0 db_conn = sqlite3.connect(path_db) cursor = db_conn.cursor() for iB, t in tqdm.tqdm(enumerate(data_loader)): nlu, nlu_t, sql_i, sql_q, sql_t, tb, hs_t, hds = get_fields(t, data_table, no_hs_t=True, no_sql_t=True) wemb_cls, wemb_n, wemb_h, l_n, l_hpu, l_hs, \ nlu_tt, t_to_tt_idx, tt_to_t_idx \ = get_wemb_bert(bert_config, model_bert, tokenizer, nlu_t, hds, max_seq_length, num_out_layers_n=num_target_layers, num_out_layers_h=num_target_layers) l_n_t = [] for t in t_to_tt_idx: l_n_t.append(len(t)) s_sn, s_sc, s_sa, s_wnop, s_wc, \ s_wo, s_tags, s_match = model(wemb_cls, wemb_n, l_n_t, wemb_h, l_hpu, l_hs, t_to_tt_idx) # prediction pr_sn, pr_sc, pr_sa, pr_wn, pr_conn_op, \ pr_wc, pr_wo, pr_tags, pr_wvi = pred_sw_se(s_sn, s_sc, s_sa, s_wnop, s_wc, s_wo, s_tags, s_match, l_n_t) pr_wv_str = convert_pr_wvi_to_string(pr_wvi, nlu_t) pr_sql_i = generate_sql_i(pr_sc, pr_sa, pr_conn_op, pr_wc, pr_wo, pr_wv_str, nlu) value_indexes, value_nums = extract_val(pr_tags, l_n_t) for b, pr_sql_i1 in enumerate(pr_sql_i): cnt += 1 results1 = {} normalize_sql(pr_sql_i1, tb[b]) results1["table_id"] = tb[b]["id"] results1["nlu"] = nlu[b] results1["sql"] = pr_sql_i1 if sql_i[b]: results1["gold_sql"] = sql_i[b] results1['value_indexes'] = value_indexes[b] results1['value_nums'] = value_nums[b] results1['pr_wc'] = pr_wc[b] if sql_i[b]: sn, sc, sa, co, wn, wc, wo, wv, cond, sql =\ get_acc(sql_i[b], pr_sql_i1, pr_wc[b], pr_wo[b], tb[b], normalized=True) cnt_sn += sn cnt_sc += sc cnt_sa += sa cnt_wnop += (wn and co) cnt_wc += wc cnt_wo += wo cnt_wv += wv cnt_lx += sql results1['correct'] = sql execution, res = get_acc_x(sql_i[b], pr_sql_i1, tb[b], cursor) cnt_x += execution results1['ex_correct'] = execution results1['result'] = res results.append(results1) cnts = [cnt_sn, cnt_sc, cnt_sa, cnt_wnop, cnt_wc, cnt_wo, cnt_wv, cnt_lx, cnt_x, (cnt_x + cnt_lx) / 2] if sum(cnts) > 0: cnt_desc = [ 's-num', 's-col', 's-col-agg', 'w-num-op', 'w-col', 'w-col-op', 'w-col-value', 'acc_lx', 'acc_x', 'acc_mx' ] logger.info('--------- eval result ---------') for k, metric in enumerate(cnts): logger.info(cnt_desc[k] + ': ' + '%.4f' % (metric / cnt,)) else: cnts = None cnt_desc = None return results, cnt, cnts, cnt_desc
2.3开始训练
if __name__ == '__main__': # Hyper parameters parser = argparse.ArgumentParser() args = construct_hyper_param(parser) save_path = args.train_url if not os.path.exists(save_path): os.makedirs(save_path) if not args.eval: _model_path = './trained_model/model/' shutil.copytree(_model_path, os.path.join(save_path, 'model')) t = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()) log_fp = os.path.join(save_path, f'{t}.log') logger = get_logger(log_fp) logger.info(f"BERT-Model: {args.bert_url}") trained = args.load_weight is not None and args.load_weight != 'None' load_path = None if trained: load_path = '/home/work/modelarts/inputs/best_model.pt' if args.load_weight and args.load_weight.startswith('obs://'): if not os.path.exists(load_path): mox.file.copy_parallel(args.load_weight, load_path) print('copy %s to %s' % (args.load_weight, load_path)) else: print(load_path, 'already exists') else: load_path = args.load_weight train_input_dir = args.data_url bert_model = args.bert_url # Paths path_wikisql = train_input_dir path_val_db = os.path.join(train_input_dir, 'val.db') path_save_for_evaluation = save_path # Build & Load models if args.eval and not trained: print('in eval mode, "--load_weight" must be provided!') exit(-1) if not trained: model, model_bert, tokenizer, bert_config = get_models(args, logger, bert_model, eval=args.eval) else: path_model = load_path model, model_bert, tokenizer, bert_config = get_models(args, logger, bert_model, trained=True, path_model=path_model, eval=args.eval) if not args.eval: train_data, train_table, dev_data, dev_table, train_loader, dev_loader = get_data(path_wikisql, args) opt, opt_bert = get_opt(model, model_bert, args.fine_tune) acc_lx_t_best = -1 epoch_best = -1 current_step = 1 for epoch in range(args.tepoch): # train logger.info(f'Training Epoch {epoch}') ave_loss_train, current_step = train(train_loader, train_table, model, model_bert, opt, bert_config, tokenizer, args.max_seq_length, args.num_target_layers, args.accumulate_gradients, args.print_per_step, logger=logger, current_step=current_step, opt_bert=opt_bert, st_pos=0) # check DEV with torch.no_grad(): logger.info(f'Testing on dev Epoch {epoch}:') acc_dev, results_dev, \ dev_acc_lx = test(dev_loader, dev_table, model, model_bert, bert_config, tokenizer, args.max_seq_length, args.num_target_layers, args.print_per_step, logger=logger, path_db=path_val_db, st_pos=0) print_result(epoch, ave_loss_train, 'train', logger=logger) print_result(epoch, acc_dev, 'dev', logger=logger) # save results for the official evaluation path_save_file = save_for_evaluation(path_save_for_evaluation, results_dev, 'dev', epoch=epoch) # mox.file.copy_parallel(path_save_file, # args.train_url + f'results_dev-{epoch}.jsonl') # save best model # Based on Dev Set logical accuracy lx if dev_acc_lx > acc_lx_t_best: acc_lx_t_best = dev_acc_lx epoch_best = epoch # save model if not args.no_save: state = {'model': model.state_dict(), 'model_bert': model_bert.state_dict()} torch.save(state, os.path.join(save_path, 'model', f'best_model.pth')) logger.info(f" Best Dev lx acc: {acc_lx_t_best} at epoch: {epoch_best}") else: try: dev_data, dev_table = load_tableqa_data(path_wikisql, mode=args.split, no_hs_tok=True) except Exception: logger.error('未找到输入文件!') exit(-1) dev_loader = torch.utils.data.DataLoader( batch_size=args.bS, dataset=dev_data, shuffle=False, num_workers=1, collate_fn=lambda x: x ) with torch.no_grad(): results, cnt, cnts, cnt_desc \ = predict(dev_loader, dev_table, model, model_bert, bert_config, tokenizer, args.max_seq_length, args.num_target_layers, os.path.join(train_input_dir, args.split + '.db')) save_for_evaluation(os.path.join(save_path, 'pred_results.jsonl'), results, args.split, 'pred', use_filename=True) if cnts: with open(os.path.join(save_path, 'eval_result.txt'), 'w') as f_eval: f_eval.write('--------- eval result ---------\n') for k, metric in enumerate(cnts): f_eval.write(cnt_desc[k] + ': ' + '%.4f' % (metric / cnt,) + '\n')
3.模型测试
from trained_model.model.customize_service import * if __name__ == '__main__': model_path = r'./outputs/model/best_model.pth' my_model = ModelClass('', model_path) data = { "question": "近四周成交量小于3574套并且环比低于69.7%的城市有几个", "table_id": "252c7b6b302e11e995ee542696d6e445" } data = my_model._preprocess(data) result = my_model._inference(data) print(json.dumps(dict(result), ensure_ascii=False, indent=2))
标签:bert,parser,ModelArts,args,--,复现,path,model,Text2SQL From: https://www.cnblogs.com/huaweiyun/p/17007714.html