基于StringRedisTemplate封装一个缓存工具类,满足下列需求:
-
方法1:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置TTL过期时间
-
方法2:将任意Java对象序列化为json并存储在string类型的key中,并且可以设置逻辑过期时间,用于处理缓
存击穿问题
-
方法3:根据指定的key查询缓存,并反序列化为指定类型,利用缓存空值的方式解决缓存穿透问题
-
方法4:根据指定的key查询缓存,并反序列化为指定类型,需要利用逻辑过期解决缓存击穿问题
将逻辑进行封装
@Slf4j @Component public class CacheClient { private final StringRedisTemplate stringRedisTemplate; private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10); public CacheClient(StringRedisTemplate stringRedisTemplate) { this.stringRedisTemplate = stringRedisTemplate; } public void set(String key, Object value, Long time, TimeUnit unit) { stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit); } public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) { // 设置逻辑过期 RedisData redisData = new RedisData(); redisData.setData(value); redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time))); // 写入Redis stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData)); } public <R,ID> R queryWithPassThrough( String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){ String key = keyPrefix + id; // 1.从redis查询商铺缓存 String json = stringRedisTemplate.opsForValue().get(key); // 2.判断是否存在 if (StrUtil.isNotBlank(json)) { // 3.存在,直接返回 return JSONUtil.toBean(json, type); } // 判断命中的是否是空值 if (json != null) { // 返回一个错误信息 return null; } // 4.不存在,根据id查询数据库 R r = dbFallback.apply(id); // 5.不存在,返回错误 if (r == null) { // 将空值写入redis stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES); // 返回错误信息 return null; } // 6.存在,写入redis this.set(key, r, time, unit); return r; } public <R, ID> R queryWithLogicalExpire( String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) { String key = keyPrefix + id; // 1.从redis查询商铺缓存 String json = stringRedisTemplate.opsForValue().get(key); // 2.判断是否存在 if (StrUtil.isBlank(json)) { // 3.存在,直接返回 return null; } // 4.命中,需要先把json反序列化为对象 RedisData redisData = JSONUtil.toBean(json, RedisData.class); R r = JSONUtil.toBean((JSONObject) redisData.getData(), type); LocalDateTime expireTime = redisData.getExpireTime(); // 5.判断是否过期 if(expireTime.isAfter(LocalDateTime.now())) { // 5.1.未过期,直接返回店铺信息 return r; } // 5.2.已过期,需要缓存重建 // 6.缓存重建 // 6.1.获取互斥锁 String lockKey = LOCK_SHOP_KEY + id; boolean isLock = tryLock(lockKey); // 6.2.判断是否获取锁成功 if (isLock){ // 6.3.成功,开启独立线程,实现缓存重建 CACHE_REBUILD_EXECUTOR.submit(() -> { try { // 查询数据库 R newR = dbFallback.apply(id); // 重建缓存 this.setWithLogicalExpire(key, newR, time, unit); } catch (Exception e) { throw new RuntimeException(e); }finally { // 释放锁 unlock(lockKey); } }); } // 6.4.返回过期的商铺信息 return r; } public <R, ID> R queryWithMutex( String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) { String key = keyPrefix + id; // 1.从redis查询商铺缓存 String shopJson = stringRedisTemplate.opsForValue().get(key); // 2.判断是否存在 if (StrUtil.isNotBlank(shopJson)) { // 3.存在,直接返回 return JSONUtil.toBean(shopJson, type); } // 判断命中的是否是空值 if (shopJson != null) { // 返回一个错误信息 return null; } // 4.实现缓存重建 // 4.1.获取互斥锁 String lockKey = LOCK_SHOP_KEY + id; R r = null; try { boolean isLock = tryLock(lockKey); // 4.2.判断是否获取成功 if (!isLock) { // 4.3.获取锁失败,休眠并重试 Thread.sleep(50); return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit); } // 4.4.获取锁成功,根据id查询数据库 r = dbFallback.apply(id); // 5.不存在,返回错误 if (r == null) { // 将空值写入redis stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES); // 返回错误信息 return null; } // 6.存在,写入redis this.set(key, r, time, unit); } catch (InterruptedException e) { throw new RuntimeException(e); }finally { // 7.释放锁 unlock(lockKey); } // 8.返回 return r; } private boolean tryLock(String key) { Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS); return BooleanUtil.isTrue(flag); } private void unlock(String key) { stringRedisTemplate.delete(key); } }
在ShopServiceImpl 中
@Resource private StringRedisTemplate stringRedisTemplate; @Resource private CacheClient cacheClient; @Override public Result queryById(Long id) { // //缓存穿透 // Shop shop = queryWithPassThrough(id); Shop shop = cacheClient // .queryWithPassThrough(CACHE_SHOP_KEY,id,Shop.class,id2->getById(id2),CACHE_SHOP_TTL,TimeUnit.MINUTES); .queryWithPassThrough(CACHE_SHOP_KEY,id,Shop.class,this::getById,CACHE_SHOP_TTL,TimeUnit.MINUTES); //缓存击穿 // Shop shop = queryWithMutex(id); // Shop shop = queryWithLogicalExpire(id); if (shop==null) { return Result.fail("店铺不存在"); } return Result.ok(shop); }
总结:
封装工具类的主要难点在于不知道他们的类型和如何去查询数据库
不知道类型的,可以使用泛型,
不知道如何查询数据库的,调用的类肯定知道,所以这里入参一个Function, 有入参有返回值的函数式编程。
标签:缓存,封装,String,Redis,stringRedisTemplate,key,return,工具,id From: https://www.cnblogs.com/kisshappyboy/p/16930931.html