首页 > 编程语言 >【金融资产组合模型进化论】5. 马科维茨资产组合模型+AI金融智能体(qwen-max)+政策信息优化方案(理论+Python实战)

【金融资产组合模型进化论】5. 马科维茨资产组合模型+AI金融智能体(qwen-max)+政策信息优化方案(理论+Python实战)

时间:2025-01-21 17:28:44浏览次数:3  
标签:end 组合 max 模型 returns factor date data stock

目录

0. 承前

本篇博文是对上一篇文章,链接:
【金融资产组合模型进化论】4. 马科维茨资产组合模型+Fama-French五因子优化方案(理论+Python实战)
预期收益计算方式进行改良。
本文首先使用Fama-French五因子计算出资产组合模型权重,再把权重结合政策信息输入AI模型,目的是

  • 在金融工程中,实现AI功能在金融模型的落地的尝试;
  • AI模型对政策信息描述内容,情绪分析等进行分析,实现政策信息对金融模型的主动影响

本文主要要素:

  • 马科维茨资产组合模型;
  • Fama-French五因子模型预期收益率;
  • AI金融智能体(通义千问:qwen-max),提示词工程;
  • 政策信息通过AI转化影响预期收益率。

如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
【金融资产组合模型进化论】0. 金融资产组合模型进化全图鉴

1. AI金融智能体

1.1 What is AI金融智能体

AI金融智能体是指利用人工智能技术,特别是机器学习、深度学习和自然语言处理等先进技术,来模拟人类分析师的行为,以执行复杂的金融分析任务的软件。本文主要是通过提示词工程,结合政策信息,给予AI一定的范围权限去影响资产组合权重,属于金融工程构建的尝试性实验。

1.2 Why is AI金融智能体

  • 自动接入全网,实时搜索并分析海量数据:AI金融智能体能够无缝连接互联网,迅速处理和解析大量的金融市场信息,为用户提供即时的洞察和支持。

  • 拥有远超人类的计算能力,揭示潜在的市场盲点:凭借其卓越的计算力,AI智能体可以深入挖掘数据,识别出那些基于常识可能被忽视的市场机会或风险。

  • 顺应技术潮流,推动更多AI工具在金融领域的实际应用:随着技术的进步,AI在金融行业的落地已成为必然趋势。金融机构需积极探索和实施更多的AI解决方案,以保持竞争力和服务创新。

1.3 How to AI金融智能体

  • 参数集设置

    1. ts.set_token:设置Tushare的API访问令牌
    2. industry:选择目标行业,如"银行"
    3. end_date:回测结束日期,格式为’YYYYMMDD’
    4. years:回测年限,默认5年
    5. risk_free_rate:无风险利率,默认0.03
    6. top_holdings:投资组合持仓数量,默认10只股票
    7. index_code:市场指数代码,默认’000300.SH’
    8. api_key:通义千问API
    9. character:AI人设提示词工程
    10. policy_info:政策信息(5条)
  • 数据准备

    1. 股票行业数据:通过tushare获取指定行业的股票列表
    2. 历史价格数据:获取指定时间段内的股票日线数据
    3. 市场指数数据:获取指定时间段内的市场指数数据
    4. 因子数据:获取市值(Size)和账面市值比(B/M)数据
    5. 财务数据:获取ROE和资产增长率数据
    6. 无风险利率:设定无风险利率参数
  • 计算流程

    1. 数据获取:获取股票、市场指数和因子数据
    2. 收益率计算:计算月度对数收益率
    3. 因子构建:构建SMB、HML、RMW和CMA因子
    4. 因子载荷计算:计算每只股票对五个因子的敏感度
    5. FF5预期收益:使用五因子模型计算预期收益率
    6. 组合优化:最大化夏普比率得到最优权重
    7. 持仓筛选:选取权重最大的N只股票并归一化
    8. AI函数:结合权重数据、政策信息、提示词工程,对权重实现智能调整

2. 数据要素&计算流程

2.1 参数集设置

设置模型所需的基本参数,包括数据获取、回测区间和优化约束等。

# 参数集
ts.set_token('token')
pro = ts.pro_api()
industry = '银行'
end_date = '20240101'
years = 5   # 数据时长
risk_free_rate = 0.03  # 无风险利率参数
top_holdings = 10      # 持仓数量参数
index_code = '000300.SH'  # 市场指数代码参数
api_key='sk-api_key'	# 通义千问API

# AI人设提示词工程
character = f'''
你是一名专业的金融数据与政策分析师,擅长解读金融市场动态和政策导向,并据此调整资产组合的权重分布,以优化投资策略。你的主要任务是对给定的资产组合进行权重调整,确保:
1. 权重之和为1;
2. 调整后的权重只能在原有基础上增减最多10%;
3. 输出的数据格式需与输入保持一致,仅提供数据而不做额外解释;
4. 数据对应的日期是{end_date},在思考过程中,切勿根据该日期之后的信息进行思考。

当你接收到具体的资产组合及其权重时,请根据最新的金融数据和政策信息对其进行合理调整。
'''

# 通过工作流获取的政策信息
policy_info = '''
| 日期 | 政策简述 |
|------|----------|
| 2023-12-29 | 央行发布《关于优化商业银行存款利率监管有关事项的通知》,取消定期存款利率浮动上限,允许银行自主协调存贷款利率 |
| 2023-11-17 | 央行、银保监会联合发布《关于做好当前商业银行房地产贷款投放管理的通知》,优化房地产信贷政策,支持刚性和改善性住房需求 |
| 2023-09-25 | 银保监会发布《关于进一步加强银行业金融机构流动性风险管理的通知》,要求银行加强流动性风险管理,完善风险监测预警机制 |
| 2023-08-31 | 央行、银保监会宣布下调全国首套住房贷款利率下限,各地可自主决定下调幅度,二套房贷款利率政策与首套相同 |
| 2023-07-21 | 十四届全国人大常委会第四次会议表决通过《中华人民共和国金融稳定法》,建立健全金融风险防范化解制度体系 |
'''

2.2 数据获取&预处理

获取股票、市场指数、因子数据和财务数据,并进行必要的数据清洗和格式转换。

def get_industry_stocks(industry):
    """获取指定行业的股票列表"""
    df = pro.stock_basic(fields=["ts_code", "name", "industry"])
    industry_stocks = df[df["industry"]==industry].copy()
    industry_stocks.sort_values(by='ts_code', inplace=True)
    industry_stocks.reset_index(drop=True, inplace=True)
    return industry_stocks['ts_code'].tolist()

def get_data(code_list, end_date, years):
    """获取指定行业名称的历史收盘价数据"""
    ts_code_list = code_list
    end_date_dt = datetime.strptime(end_date, '%Y%m%d')
    start_date_dt = end_date_dt - timedelta(days=years*365)
    start_date = start_date_dt.strftime('%Y%m%d')
    
    all_data = []
    for stock in ts_code_list:
        df = pro.daily(ts_code=stock, start_date=start_date, end_date=end_date)
        all_data.append(df)
    
    combined_df = pd.concat(all_data).sort_values(by=['ts_code', 'trade_date'])
    combined_df.reset_index(drop=True, inplace=True)
    combined_df.rename(columns={'trade_date': 'date'}, inplace=True)
    
    return combined_df

def get_market_data(index_code='000300.SH', start_date=None, end_date=None):
    """获取市场指数数据用于计算贝塔"""
    df_market = pro.index_daily(ts_code=index_code, 
                              start_date=start_date, 
                              end_date=end_date,
                              fields=['trade_date', 'close'])
    df_market['date'] = pd.to_datetime(df_market['trade_date'])
    df_market.set_index('date', inplace=True)
    df_market = df_market.sort_index()
    
    monthly_last_close = df_market['close'].resample('M').last()
    monthly_log_returns = np.log(monthly_last_close).diff().dropna()
    return monthly_log_returns

def get_factor_data(stock_codes, start_date=None, end_date=None):
    """获取指定股票的因子数据(市值和PB)"""
    all_factor_data = []
    for stock in stock_codes:
        try:
            df = pro.daily_basic(
                ts_code=stock,
                start_date=start_date,
                end_date=end_date,
                fields=['ts_code', 'trade_date', 'total_mv', 'pb']
            )
            all_factor_data.append(df)
        except Exception as e:
            print(f"获取股票 {stock} 的因子数据失败: {str(e)}")
            continue
    
    factor_data = pd.concat(all_factor_data, ignore_index=True)
    factor_data['trade_date'] = pd.to_datetime(factor_data['trade_date'])
    return factor_data

def get_fina_data(stock_codes, start_date=None, end_date=None):
    """获取指定股票的财务指标数据(ROE和资产增长率)"""
    all_fina_data = []
    for stock in stock_codes:
        try:
            df = pro.fina_indicator(
                ts_code=stock,
                start_date=start_date,
                end_date=end_date,
                fields=['ts_code', 'end_date', 'roe_dt', 'assets_yoy', 'update_flag']
            )
            all_fina_data.append(df)
        except Exception as e:
            print(f"获取股票 {stock} 的财务数据失败: {str(e)}")
            continue
    
    # 合并数据
    fina_data = pd.concat(all_fina_data, ignore_index=True)
    
    # 处理update_flag,保留最新数据
    fina_data = (fina_data.groupby(['ts_code', 'end_date'])
                         .agg({'roe_dt': 'first', 
                              'assets_yoy': 'first',
                              'update_flag': 'max'})
                         .reset_index())
    
    # 将end_date转换为datetime
    fina_data['end_date'] = pd.to_datetime(fina_data['end_date'])
    
    # 创建季度到月度的映射
    monthly_data = []
    for _, row in fina_data.iterrows():
        quarter_end = row['end_date']
        if quarter_end.month == 3:  # Q1
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        elif quarter_end.month == 6:  # Q2
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        elif quarter_end.month == 9:  # Q3
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        else:  # Q4
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        
        for month in months:
            monthly_data.append({
                'ts_code': row['ts_code'],
                'trade_date': month,
                'roe_dt': row['roe_dt'],
                'assets_yoy': row['assets_yoy']
            })
    
    monthly_df = pd.DataFrame(monthly_data)
    return monthly_df

2.3 收益率计算

计算月度对数收益率,为后续的因子构建和优化计算做准备。

def calculate_monthly_log_returns(df):
    """计算每月的对数收益率"""
    df['date'] = pd.to_datetime(df['date'])
    monthly_last_close = df.groupby(['ts_code', pd.Grouper(key='date', freq='M')])['close'].last().unstack(level=-1)
    monthly_log_returns = np.log(monthly_last_close).diff().dropna()
    return monthly_log_returns.T

2.4 因子构建与预期收益率计算

构建SMB、HML、RMW和CMA因子,并使用五因子模型计算预期收益率。

def calculate_expected_returns(monthly_log_returns):
    """使用Fama-French五因子模型计算各股票的预期收益率"""
    start_date = monthly_log_returns.index.min().strftime('%Y%m%d')
    end_date = monthly_log_returns.index.max().strftime('%Y%m%d')
    
    # 获取财务数据时,将start_date往前推一个季度,以确保有完整的季度数据
    fina_start_date = (datetime.strptime(start_date, '%Y%m%d') - timedelta(days=90)).strftime('%Y%m%d')
    
    # 获取市场收益率
    market_returns = get_market_data(index_code, start_date, end_date)
    
    # 获取股票的市值和PB数据
    stock_data = get_factor_data(
        monthly_log_returns.columns.tolist(),
        start_date,
        end_date
    )
    
    # 获取财务指标数据,使用提前的start_date
    fina_data = get_fina_data(
        monthly_log_returns.columns.tolist(),
        fina_start_date,
        end_date
    )
    
    # 确保所有数据的日期对齐
    aligned_dates = monthly_log_returns.index.intersection(market_returns.index)
    market_returns = market_returns[aligned_dates]
    stock_returns = monthly_log_returns.loc[aligned_dates].copy()  # 使用copy()避免SettingWithCopyWarning
    
    def calculate_size_factor(date):
        date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        median_mv = date_data['total_mv'].median()
        small_returns = stock_returns.loc[date, date_data[date_data['total_mv'] <= median_mv]['ts_code']]
        big_returns = stock_returns.loc[date, date_data[date_data['total_mv'] > median_mv]['ts_code']]
        return small_returns.mean() - big_returns.mean()
    
    def calculate_value_factor(date):
        date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        # 创建date_data的副本并计算bm_ratio
        date_data = date_data.copy()
        date_data.loc[:, 'bm_ratio'] = 1 / date_data['pb']
        
        median_bm = date_data['bm_ratio'].median()
        high_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] > median_bm]['ts_code']]
        low_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] <= median_bm]['ts_code']]
        return high_returns.mean() - low_returns.mean()
    
    def calculate_profitability_factor(date):
        date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        
        median_roe = date_data['roe_dt'].median()
        robust_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] > median_roe]['ts_code']]
        weak_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] <= median_roe]['ts_code']]
        return robust_returns.mean() - weak_returns.mean()
    
    def calculate_investment_factor(date):
        date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        
        median_growth = date_data['assets_yoy'].median()
        conservative_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] <= median_growth]['ts_code']]
        aggressive_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] > median_growth]['ts_code']]
        return conservative_returns.mean() - aggressive_returns.mean()
    
    # 计算每个月的因子收益
    smb_factor = pd.Series([calculate_size_factor(date) for date in aligned_dates], index=aligned_dates)
    hml_factor = pd.Series([calculate_value_factor(date) for date in aligned_dates], index=aligned_dates)
    rmw_factor = pd.Series([calculate_profitability_factor(date) for date in aligned_dates], index=aligned_dates)
    cma_factor = pd.Series([calculate_investment_factor(date) for date in aligned_dates], index=aligned_dates)
    
    # 使用OLS回归计算每个股票的因子载荷
    factor_loadings = {}
    for stock in stock_returns.columns:
        X = sm.add_constant(pd.concat([
            market_returns - risk_free_rate,
            smb_factor,
            hml_factor,
            rmw_factor,
            cma_factor
        ], axis=1))
        y = stock_returns[stock] - risk_free_rate
        
        model = sm.OLS(y, X).fit()
        factor_loadings[stock] = model.params[1:]
    
    # 计算因子风险溢价
    market_premium = market_returns.mean() - risk_free_rate
    smb_premium = smb_factor.mean()
    hml_premium = hml_factor.mean()
    rmw_premium = rmw_factor.mean()
    cma_premium = cma_factor.mean()
    
    # 使用FF5模型计算预期收益率
    expected_returns = pd.Series({
        stock: (risk_free_rate + 
                loadings.iloc[0] * market_premium +
                loadings.iloc[1] * smb_premium + 
                loadings.iloc[2] * hml_premium +
                loadings.iloc[3] * rmw_premium +
                loadings.iloc[4] * cma_premium)
        for stock, loadings in factor_loadings.items()
    })
    
    return expected_returns

2.5 协方差矩阵计算

计算收益率的协方差矩阵,用于评估资产间的相关性和波动性。

def calculate_covariance_matrix(monthly_log_returns):
    """计算收益率协方差矩阵"""
    return monthly_log_returns.cov()

2.6 投资组合优化

通过最大化夏普比率来寻找最优权重配置。

def max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate):
    """计算最大夏普比率的投资组合权重"""
    num_assets = len(mean_returns)
    args = (mean_returns, cov_matrix, risk_free_rate)
    constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
    bounds = tuple((0, 1) for asset in range(num_assets))
    result = minimize(negative_sharpe_ratio, num_assets*[1./num_assets], args=args,
                      method='SLSQP', bounds=bounds, constraints=constraints)
    return result.x

2.7 持仓筛选

选取权重最大的N只股票并重新归一化权重。

def calculate_top_holdings_weights(optimal_weights, monthly_log_returns_columns, top_n):
    """计算前N大持仓的权重占比"""
    result_dict = {asset: weight for asset, weight in zip(monthly_log_returns_columns, optimal_weights)}
    top_n_holdings = sorted(result_dict.items(), key=lambda item: item[1], reverse=True)[:top_n]
    top_n_sum = sum(value for _, value in top_n_holdings)
    updated_result = {key: value / top_n_sum for key, value in top_n_holdings}
    return updated_result

2.8 AI金融智能体调仓函数

def get_ai_weights(character, policy_info, updated_result, api_key):
  # 定义发送对话内容
  messages = [
      {'role': 'system', 'content': character},
      {'role': 'user', 'content': policy_info},
      {'role': 'user', 'content': json.dumps(updated_result, ensure_ascii=False)}
      ]
  response = dashscope.Generation.call(
      api_key=api_key,
      model="qwen-max",
      messages=messages,
      result_format='message',
      enable_search=True,
      top_p=0.01
      )

  # 提取content内容
  content = response['output']['choices'][0]['message']['content']

  # 将JSON字符串转换为Python字典
  portfolio_weights = json.loads(content)

  # 将字典中的值修改为6位小数
  portfolio_weights = {k: round(v, 6) for k, v in portfolio_weights.items()}

  return portfolio_weights

3. 汇总代码

以下即为全量代码,修改参数集中内容即可跑出个性化数据。

import tushare as ts
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
from scipy.optimize import minimize
import backtrader as bt
import statsmodels.api as sm
import os
import json
import dashscope

# 参数集##############################################################################
ts.set_token('token')
pro = ts.pro_api()
industry = '银行'
end_date = '20240101'
years = 5   # 数据时长
risk_free_rate = 0.03  # 无风险利率参数
top_holdings = 10      # 持仓数量参数
index_code = '000300.SH'  # 市场指数代码参数
api_key='sk-api_key'	# 通义千问API

# AI人设提示词工程
character = f'''
你是一名专业的金融数据与政策分析师,擅长解读金融市场动态和政策导向,并据此调整资产组合的权重分布,以优化投资策略。你的主要任务是对给定的资产组合进行权重调整,确保:
1. 权重之和为1;
2. 调整后的权重只能在原有基础上增减最多10%;
3. 输出的数据格式需与输入保持一致,仅提供数据而不做额外解释;
4. 数据对应的日期是{end_date},在思考过程中,切勿根据该日期之后的信息进行思考。

当你接收到具体的资产组合及其权重时,请根据最新的金融数据和政策信息对其进行合理调整。
'''

# 通过工作流获取的政策信息
policy_info = '''
| 日期 | 政策简述 |
|------|----------|
| 2023-12-29 | 央行发布《关于优化商业银行存款利率监管有关事项的通知》,取消定期存款利率浮动上限,允许银行自主协调存贷款利率 |
| 2023-11-17 | 央行、银保监会联合发布《关于做好当前商业银行房地产贷款投放管理的通知》,优化房地产信贷政策,支持刚性和改善性住房需求 |
| 2023-09-25 | 银保监会发布《关于进一步加强银行业金融机构流动性风险管理的通知》,要求银行加强流动性风险管理,完善风险监测预警机制 |
| 2023-08-31 | 央行、银保监会宣布下调全国首套住房贷款利率下限,各地可自主决定下调幅度,二套房贷款利率政策与首套相同 |
| 2023-07-21 | 十四届全国人大常委会第四次会议表决通过《中华人民共和国金融稳定法》,建立健全金融风险防范化解制度体系 |
'''
# 参数集##############################################################################

def get_industry_stocks(industry):
    """获取指定行业的股票列表"""
    df = pro.stock_basic(fields=["ts_code", "name", "industry"])
    industry_stocks = df[df["industry"]==industry].copy()
    industry_stocks.sort_values(by='ts_code', inplace=True)
    industry_stocks.reset_index(drop=True, inplace=True)
    return industry_stocks['ts_code'].tolist()

def get_data(code_list, end_date, years):
    """获取指定行业名称的历史收盘价数据"""
    ts_code_list = code_list
    end_date_dt = datetime.strptime(end_date, '%Y%m%d')
    start_date_dt = end_date_dt - timedelta(days=years*365)
    start_date = start_date_dt.strftime('%Y%m%d')
    
    all_data = []
    for stock in ts_code_list:
        df = pro.daily(ts_code=stock, start_date=start_date, end_date=end_date)
        all_data.append(df)
    
    combined_df = pd.concat(all_data).sort_values(by=['ts_code', 'trade_date'])
    combined_df.reset_index(drop=True, inplace=True)
    combined_df.rename(columns={'trade_date': 'date'}, inplace=True)
    
    return combined_df

def get_market_data(index_code='000300.SH', start_date=None, end_date=None):
    """获取市场指数数据用于计算贝塔"""
    df_market = pro.index_daily(ts_code=index_code, 
                              start_date=start_date, 
                              end_date=end_date,
                              fields=['trade_date', 'close'])
    df_market['date'] = pd.to_datetime(df_market['trade_date'])
    df_market.set_index('date', inplace=True)
    df_market = df_market.sort_index()
    
    monthly_last_close = df_market['close'].resample('M').last()
    monthly_log_returns = np.log(monthly_last_close).diff().dropna()
    return monthly_log_returns

def get_factor_data(stock_codes, start_date=None, end_date=None):
    """获取指定股票的因子数据(市值和PB)"""
    all_factor_data = []
    for stock in stock_codes:
        try:
            df = pro.daily_basic(
                ts_code=stock,
                start_date=start_date,
                end_date=end_date,
                fields=['ts_code', 'trade_date', 'total_mv', 'pb']
            )
            all_factor_data.append(df)
        except Exception as e:
            print(f"获取股票 {stock} 的因子数据失败: {str(e)}")
            continue
    
    factor_data = pd.concat(all_factor_data, ignore_index=True)
    factor_data['trade_date'] = pd.to_datetime(factor_data['trade_date'])
    return factor_data

def get_fina_data(stock_codes, start_date=None, end_date=None):
	"""获取指定股票的财务指标数据(ROE和资产增长率)"""
    all_fina_data = []
    for stock in stock_codes:
        try:
            df = pro.fina_indicator(
                ts_code=stock,
                start_date=start_date,
                end_date=end_date,
                fields=['ts_code', 'end_date', 'roe_dt', 'assets_yoy', 'update_flag']
            )
            all_fina_data.append(df)
        except Exception as e:
            print(f"获取股票 {stock} 的财务数据失败: {str(e)}")
            continue
    
    # 合并数据
    fina_data = pd.concat(all_fina_data, ignore_index=True)
    
    # 处理update_flag,保留最新数据
    fina_data = (fina_data.groupby(['ts_code', 'end_date'])
                         .agg({'roe_dt': 'first', 
                              'assets_yoy': 'first',
                              'update_flag': 'max'})
                         .reset_index())
    
    # 将end_date转换为datetime
    fina_data['end_date'] = pd.to_datetime(fina_data['end_date'])
    
    # 创建季度到月度的映射
    monthly_data = []
    for _, row in fina_data.iterrows():
        quarter_end = row['end_date']
        if quarter_end.month == 3:  # Q1
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        elif quarter_end.month == 6:  # Q2
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        elif quarter_end.month == 9:  # Q3
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        else:  # Q4
            months = [quarter_end + pd.DateOffset(months=i) for i in range(1, 4)]
        
        for month in months:
            monthly_data.append({
                'ts_code': row['ts_code'],
                'trade_date': month,
                'roe_dt': row['roe_dt'],
                'assets_yoy': row['assets_yoy']
            })
    
    monthly_df = pd.DataFrame(monthly_data)
    return monthly_df

def calculate_monthly_log_returns(df):
    """计算每月的对数收益率"""
    df['date'] = pd.to_datetime(df['date'])
    monthly_last_close = df.groupby(['ts_code', pd.Grouper(key='date', freq='M')])['close'].last().unstack(level=-1)
    monthly_log_returns = np.log(monthly_last_close).diff().dropna()
    return monthly_log_returns.T

def calculate_expected_returns(monthly_log_returns):
    """使用Fama-French五因子模型计算各股票的预期收益率"""
    start_date = monthly_log_returns.index.min().strftime('%Y%m%d')
    end_date = monthly_log_returns.index.max().strftime('%Y%m%d')
    
    # 获取财务数据时,将start_date往前推一个季度,以确保有完整的季度数据
    fina_start_date = (datetime.strptime(start_date, '%Y%m%d') - timedelta(days=90)).strftime('%Y%m%d')
    
    # 获取市场收益率
    market_returns = get_market_data(index_code, start_date, end_date)
    
    # 获取股票的市值和PB数据
    stock_data = get_factor_data(
        monthly_log_returns.columns.tolist(),
        start_date,
        end_date
    )
    
    # 获取财务指标数据,使用提前的start_date
    fina_data = get_fina_data(
        monthly_log_returns.columns.tolist(),
        fina_start_date,
        end_date
    )
    
    # 确保所有数据的日期对齐
    aligned_dates = monthly_log_returns.index.intersection(market_returns.index)
    market_returns = market_returns[aligned_dates]
    stock_returns = monthly_log_returns.loc[aligned_dates].copy()  # 使用copy()避免SettingWithCopyWarning
    
    def calculate_size_factor(date):
        date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        median_mv = date_data['total_mv'].median()
        small_returns = stock_returns.loc[date, date_data[date_data['total_mv'] <= median_mv]['ts_code']]
        big_returns = stock_returns.loc[date, date_data[date_data['total_mv'] > median_mv]['ts_code']]
        return small_returns.mean() - big_returns.mean()
    
    def calculate_value_factor(date):
        date_data = stock_data[stock_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        # 创建date_data的副本并计算bm_ratio
        date_data = date_data.copy()
        date_data.loc[:, 'bm_ratio'] = 1 / date_data['pb']
        
        median_bm = date_data['bm_ratio'].median()
        high_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] > median_bm]['ts_code']]
        low_returns = stock_returns.loc[date, date_data[date_data['bm_ratio'] <= median_bm]['ts_code']]
        return high_returns.mean() - low_returns.mean()
    
    def calculate_profitability_factor(date):
        date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        
        median_roe = date_data['roe_dt'].median()
        robust_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] > median_roe]['ts_code']]
        weak_returns = stock_returns.loc[date, date_data[date_data['roe_dt'] <= median_roe]['ts_code']]
        return robust_returns.mean() - weak_returns.mean()
    
    def calculate_investment_factor(date):
        date_data = fina_data[fina_data['trade_date'].dt.to_period('M') == date.to_period('M')]
        
        median_growth = date_data['assets_yoy'].median()
        conservative_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] <= median_growth]['ts_code']]
        aggressive_returns = stock_returns.loc[date, date_data[date_data['assets_yoy'] > median_growth]['ts_code']]
        return conservative_returns.mean() - aggressive_returns.mean()
    
    # 计算每个月的因子收益
    smb_factor = pd.Series([calculate_size_factor(date) for date in aligned_dates], index=aligned_dates)
    hml_factor = pd.Series([calculate_value_factor(date) for date in aligned_dates], index=aligned_dates)
    rmw_factor = pd.Series([calculate_profitability_factor(date) for date in aligned_dates], index=aligned_dates)
    cma_factor = pd.Series([calculate_investment_factor(date) for date in aligned_dates], index=aligned_dates)
    
    # 使用OLS回归计算每个股票的因子载荷
    factor_loadings = {}
    for stock in stock_returns.columns:
        X = sm.add_constant(pd.concat([
            market_returns - risk_free_rate,
            smb_factor,
            hml_factor,
            rmw_factor,
            cma_factor
        ], axis=1))
        y = stock_returns[stock] - risk_free_rate
        
        model = sm.OLS(y, X).fit()
        factor_loadings[stock] = model.params[1:]
    
    # 计算因子风险溢价
    market_premium = market_returns.mean() - risk_free_rate
    smb_premium = smb_factor.mean()
    hml_premium = hml_factor.mean()
    rmw_premium = rmw_factor.mean()
    cma_premium = cma_factor.mean()
    
    # 使用FF5模型计算预期收益率
    expected_returns = pd.Series({
        stock: (risk_free_rate + 
                loadings.iloc[0] * market_premium +
                loadings.iloc[1] * smb_premium + 
                loadings.iloc[2] * hml_premium +
                loadings.iloc[3] * rmw_premium +
                loadings.iloc[4] * cma_premium)
        for stock, loadings in factor_loadings.items()
    })
    
    return expected_returns

def calculate_covariance_matrix(monthly_log_returns):
    """计算收益率协方差矩阵"""
    return monthly_log_returns.cov()

def portfolio_performance(weights, mean_returns, cov_matrix):
    """计算投资组合的表现"""
    returns = np.sum(mean_returns * weights) 
    std_dev = np.sqrt(np.dot(weights.T, np.dot(cov_matrix, weights)))
    return returns, std_dev

def negative_sharpe_ratio(weights, mean_returns, cov_matrix, risk_free_rate):
    """计算负夏普比率"""
    p_ret, p_std = portfolio_performance(weights, mean_returns, cov_matrix)
    sharpe_ratio = (p_ret - risk_free_rate) / p_std
    return -sharpe_ratio

def max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate):
    """计算最大夏普比率的投资组合权重"""
    num_assets = len(mean_returns)
    args = (mean_returns, cov_matrix, risk_free_rate)
    constraints = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
    bounds = tuple((0, 1) for asset in range(num_assets))
    result = minimize(negative_sharpe_ratio, num_assets*[1./num_assets], args=args,
                      method='SLSQP', bounds=bounds, constraints=constraints)
    return result.x

def calculate_top_holdings_weights(optimal_weights, monthly_log_returns_columns, top_n):
    """计算前N大持仓的权重占比"""
    result_dict = {asset: weight for asset, weight in zip(monthly_log_returns_columns, optimal_weights)}
    top_n_holdings = sorted(result_dict.items(), key=lambda item: item[1], reverse=True)[:top_n]
    top_n_sum = sum(value for _, value in top_n_holdings)
    updated_result = {key: value / top_n_sum for key, value in top_n_holdings}
    return updated_result

def get_ai_weights(character, policy_info, updated_result, api_key):
  # 定义发送对话内容
  messages = [
      {'role': 'system', 'content': character},
      {'role': 'user', 'content': policy_info},
      {'role': 'user', 'content': json.dumps(updated_result, ensure_ascii=False)}
      ]
  response = dashscope.Generation.call(
      api_key=api_key,
      model="qwen-max",
      messages=messages,
      result_format='message',
      enable_search=True,
      top_p=0.01
      )

  # 提取content内容
  content = response['output']['choices'][0]['message']['content']

  # 将JSON字符串转换为Python字典
  portfolio_weights = json.loads(content)

  # 将字典中的值修改为6位小数
  portfolio_weights = {k: round(v, 6) for k, v in portfolio_weights.items()}

  return portfolio_weights

def main():
    # 获取数据
    code_list = get_industry_stocks(industry)
    df = get_data(code_list, end_date, years)

    # 计算每月的对数收益率
    monthly_log_returns = calculate_monthly_log_returns(df)
    
    # 使用FF5模型计算预期收益率
    mean_returns = calculate_expected_returns(monthly_log_returns)
    
    # 计算收益率协方差矩阵
    cov_matrix = calculate_covariance_matrix(monthly_log_returns)

    # 优化权重
    optimal_weights = max_sharpe_ratio(mean_returns, cov_matrix, risk_free_rate)
    
    # 计算前N大持仓权重
    updated_result = calculate_top_holdings_weights(
        optimal_weights, 
        monthly_log_returns.columns, 
        top_holdings
    )
    
	# 计算AI调仓后的持仓权重
	updated_result = get_ai_weights(character, policy_info, updated_result, api_key)
    
    # 打印更新后的资产占比
    print(f"\n{end_date}最优资产前{top_holdings}占比:")
    print(updated_result)

if __name__ == "__main__":
    main()

运行结果:

AI金融智能体调仓前权重:
在这里插入图片描述

股票代码占比
601398.SH0.16318772568631026
601328.SH0.16177476392789242
600919.SH0.12936894301756055
600036.SH0.10747174637443846
601169.SH0.0958427702817229
600016.SH0.09012906474680284
601166.SH0.08768928377548085
601288.SH0.06538512327994642
600908.SH0.05559150377594274
600926.SH0.043559075133902475

AI金融智能体调仓后权重:

{'601398.SH': 0.179499, '601328.SH': 0.177949, '600919.SH': 0.142309, '600036.SH': 0.118218, 
'601169.SH': 0.105428, '600016.SH': 0.099142, '601166.SH': 0.096456, '601288.SH': 0.071921, 
'600908.SH': 0.061151, '600926.SH': 0.048936}
股票代码占比
601398.SH0.179499
601328.SH0.177949
600919.SH0.142309
600036.SH0.118218
601169.SH0.105428
600016.SH0.099142
601166.SH0.096456
601288.SH0.071921
600908.SH0.061151
600926.SH0.048936

可见,AI金融智能体通过对政策信息的了解,加大对银行业投资的信心,特别是对大型国有银行和部分地方性银行。这种调整反映了AI对于市场动态的理解以及对未来收益预期的优化。
我们后验的经验也证明:在2024年银行行业是一个值得投资的行业,如果在20240101投资银行行业,将会获得不俗的收益。

4. 反思

4.1 不足之处

  1. 政策信息获取:获取政策信息方案仍为半手动
  2. AI逻辑缜密度:AI可能未能完全按照提示词工程执行

4.2 提升思路

  1. 更换AI智能体:使用由幻方量化开发的DeepSeek-V3 模型
  2. 工作流接入金融工程内部,实现真正全自动

5. 启后

  • 优化,下一篇文章将会尝试使用由幻方量化开发的DeepSeek_V3模型:,可参考下一篇文章:
    pass

  • 量化回测实现,可参考下一篇文章:
    pass

标签:end,组合,max,模型,returns,factor,date,data,stock
From: https://blog.csdn.net/weixin_39521144/article/details/145280763

相关文章

  • 一镜到底,通过Llama大模型架构图看透transformers原理
    一镜到底,通过Llama大模型架构图看透transformers原理LlamaNutsandBolts是Github上使用Go语言从零重写Llama3.18B-Instruct模型推理过程(80亿参数规模)的实战类开源项目,其作者是来自土耳其的AdilAlperDALKIRAN。如果你对于LLM(大语言模型)和Transformers的工作原理感兴趣,并......
  • 深入剖析 JVM 内存模型
    前言:下面分别介绍了新生代和老年代的不同收集器及其相关子类型,并附有示例代码和说明,感兴趣的朋友可以参考一下。简介:在Java虚拟机(JVM)的世界里,内存模型是其核心架构之一,它决定了Java程序如何存储和管理数据,深刻影响着程序的性能和稳定性。了解JVM内存模型,对于优化......
  • 关于双塔模型的简单介绍
            双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例 使用python语言来简单示例一下实现过程如下:importtensorflowas......
  • 【ComfyUI专栏】ComfyUI的模型管理和节点管理-Manager节点
    我们默认情况下,会发现ComfyUI无法进行节点和模型管理。需要通过插件来实现这些模型的管理。而目前开发爱好者们基于ComfyUI的本身功能做了一定的扩展,也就是Manager来进行节点管理,我们需要执行如下的命令来实现节点的复制:cd comfyui\custom_nodesgitclone https://github......
  • ProtChat:融合大语言模型与蛋白质语言模型的自动化蛋白质分析工具
    近年来,大语言模型(LLMs)在自然语言处理领域取得了巨大进展,极大地提升了人机交互的效率和精准度。而在计算生物学中,蛋白质序列被类比为自然语言,基于此的蛋白质大语言模型(PLLMs)也应运而生。然而,PLLMs的应用往往需要复杂的预处理和脚本开发,这使得非计算背景的研究人员难以充分利用其潜......
  • 深度学习与大语言模型开源书单
    下面是一些开源的深度学习与大语言模型教程书籍,可以从GitHub免费下载。神经网络与深度学习链接:https://nndl.github.io/介绍:系统地整理了神经网络和深度学习的知识体系。鉴于深度学习涉及的知识点较多,本书从机器学习的基本概念、神经网络模型以及概率图模型三个层面来串联......
  • tvpvar模型matlab代码及自学手册
    tvp-var模型matlab代码及自学手册,TVP-var新手自学入门必备。资源文件列表derek_zhu201409252059(tvpvar)/drawimp.m , 2080derek_zhu201409252059(tvpvar)/fAt.m , 631derek_zhu201409252059(tvpvar)/fGeweke.m , 768derek_zhu201409252059(tvpvar)/finvm.m , 544de......
  • 【人工智能】Python实战:构建高效的多任务学习模型
    《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能......
  • 大语言模型应用实践:性能与资源的权衡之道
    标题:大语言模型应用实践:性能与资源的权衡之道文章信息摘要:文章深入探讨了大型语言模型在实践应用中的多维度权衡。从运行成本、模型特点、部署方案等方面分析了不同选择的优劣势。技术实现上强调了模板设计、缓存优化等细节的重要性,以及RLHF与DPO等训练方法的演进。在评估......
  • 如何有效”PUA“大模型 出好结果?
    实际上来说,并不应该更加礼貌,而是需要“PUA”大模型才能得到更好的结果。最近看的一篇论文《大型语言模型理解情感刺激并可借此得到增强》研究了如何对大模型进行情感刺激来增强提示(prompt)的效果。在这里也将情感划分为两个维度(社会效应和自尊)包含11种类型,分别组合来对比情......