首页 > 编程语言 >Javascript数据结构常见题目(一)

Javascript数据结构常见题目(一)

时间:2024-12-28 13:31:27浏览次数:9  
标签:node function return Javascript let push 题目 数据结构 root

以下是每个问题的 JavaScript 实现:


1. 下一个更大元素 (循环数组)

function nextGreaterElements(nums) {
    let n = nums.length;
    let result = Array(n).fill(-1);
    let stack = [];
    for (let i = 0; i < 2 * n; i++) {
        let num = nums[i % n];
        while (stack.length && nums[stack[stack.length - 1]] < num) {
            result[stack.pop()] = num;
        }
        if (i < n) stack.push(i);
    }
    return result;
}

2. 逆波兰表达式求值

function evalRPN(tokens) {
    let stack = [];
    for (let token of tokens) {
        if (!isNaN(token)) {
            stack.push(Number(token));
        } else {
            let b = stack.pop();
            let a = stack.pop();
            switch (token) {
                case '+': stack.push(a + b); break;
                case '-': stack.push(a - b); break;
                case '*': stack.push(a * b); break;
                case '/': stack.push(Math.trunc(a / b)); break;
            }
        }
    }
    return stack[0];
}

3. 二叉树的最大路径和

function maxPathSum(root) {
    let maxSum = -Infinity;

    function dfs(node) {
        if (!node) return 0;
        let left = Math.max(0, dfs(node.left));
        let right = Math.max(0, dfs(node.right));
        maxSum = Math.max(maxSum, left + right + node.val);
        return Math.max(left, right) + node.val;
    }

    dfs(root);
    return maxSum;
}

4. 从前序与中序遍历序列构造二叉树

function buildTree(preorder, inorder) {
    if (!preorder.length || !inorder.length) return null;

    let rootVal = preorder[0];
    let root = { val: rootVal, left: null, right: null };
    let mid = inorder.indexOf(rootVal);

    root.left = buildTree(preorder.slice(1, mid + 1), inorder.slice(0, mid));
    root.right = buildTree(preorder.slice(mid + 1), inorder.slice(mid + 1));
    return root;
}

5. 从中序与后序遍历序列构造二叉树

function buildTreeFromInPost(inorder, postorder) {
    if (!inorder.length || !postorder.length) return null;

    let rootVal = postorder.pop();
    let root = { val: rootVal, left: null, right: null };
    let mid = inorder.indexOf(rootVal);

    root.right = buildTreeFromInPost(inorder.slice(mid + 1), postorder);
    root.left = buildTreeFromInPost(inorder.slice(0, mid), postorder);
    return root;
}

6. 栈的链式存储

class StackNode {
    constructor(value) {
        this.value = value;
        this.next = null;
    }
}

class LinkedStack {
    constructor() {
        this.top = null;
    }

    push(value) {
        let newNode = new StackNode(value);
        newNode.next = this.top;
        this.top = newNode;
    }

    pop() {
        if (!this.top) return null;
        let value = this.top.value;
        this.top = this.top.next;
        return value;
    }

    peek() {
        return this.top ? this.top.value : null;
    }

    isEmpty() {
        return this.top === null;
    }
}

7. 下一个更大元素

function nextGreaterElement(nums1, nums2) {
    let map = new Map();
    let stack = [];

    for (let num of nums2) {
        while (stack.length && stack[stack.length - 1] < num) {
            map.set(stack.pop(), num);
        }
        stack.push(num);
    }

    return nums1.map(num => map.get(num) || -1);
}

8. 括号匹配

function isValid(s) {
    let stack = [];
    let map = { ')': '(', '}': '{', ']': '[' };

    for (let char of s) {
        if (char in map) {
            if (stack.pop() !== map[char]) return false;
        } else {
            stack.push(char);
        }
    }

    return stack.length === 0;
}

9. 二叉树的最近公共祖先

function lowestCommonAncestor(root, p, q) {
    if (!root || root === p || root === q) return root;

    let left = lowestCommonAncestor(root.left, p, q);
    let right = lowestCommonAncestor(root.right, p, q);

    if (left && right) return root;
    return left || right;
}

这些代码覆盖了您所列的所有问题,且在实践中非常实用。希望对您有所帮助!
以下是每个问题的 JavaScript 实现:


1. 最小栈

class MinStack {
    constructor() {
        this.stack = [];
        this.minStack = [];
    }

    push(val) {
        this.stack.push(val);
        if (!this.minStack.length || val <= this.getMin()) {
            this.minStack.push(val);
        }
    }

    pop() {
        if (this.stack.pop() === this.getMin()) {
            this.minStack.pop();
        }
    }

    top() {
        return this.stack[this.stack.length - 1];
    }

    getMin() {
        return this.minStack[this.minStack.length - 1];
    }
}

2. 用栈实现队列

class MyQueue {
    constructor() {
        this.stackIn = [];
        this.stackOut = [];
    }

    push(x) {
        this.stackIn.push(x);
    }

    pop() {
        this._move();
        return this.stackOut.pop();
    }

    peek() {
        this._move();
        return this.stackOut[this.stackOut.length - 1];
    }

    empty() {
        return !this.stackIn.length && !this.stackOut.length;
    }

    _move() {
        if (!this.stackOut.length) {
            while (this.stackIn.length) {
                this.stackOut.push(this.stackIn.pop());
            }
        }
    }
}

3. 二叉树的右视图

function rightSideView(root) {
    if (!root) return [];
    let result = [];
    let queue = [root];

    while (queue.length) {
        let levelSize = queue.length;
        for (let i = 0; i < levelSize; i++) {
            let node = queue.shift();
            if (i === levelSize - 1) result.push(node.val);
            if (node.left) queue.push(node.left);
            if (node.right) queue.push(node.right);
        }
    }
    return result;
}

4. 表达式求值

function evaluateExpression(expression) {
    let stack = [];
    let num = 0;
    let sign = 1;
    let result = 0;

    for (let char of expression) {
        if (char === ' ') continue;
        if (/\d/.test(char)) {
            num = num * 10 + Number(char);
        } else if (char === '+') {
            result += sign * num;
            num = 0;
            sign = 1;
        } else if (char === '-') {
            result += sign * num;
            num = 0;
            sign = -1;
        } else if (char === '(') {
            stack.push(result);
            stack.push(sign);
            result = 0;
            sign = 1;
        } else if (char === ')') {
            result += sign * num;
            num = 0;
            result *= stack.pop();
            result += stack.pop();
        }
    }
    return result + sign * num;
}

5. 验证二叉搜索树

function isValidBST(root, min = null, max = null) {
    if (!root) return true;
    if ((min !== null && root.val <= min) || (max !== null && root.val >= max)) {
        return false;
    }
    return isValidBST(root.left, min, root.val) && isValidBST(root.right, root.val, max);
}

6. 用队列实现栈

class MyStack {
    constructor() {
        this.queue = [];
    }

    push(x) {
        this.queue.push(x);
        let size = this.queue.length;
        while (size > 1) {
            this.queue.push(this.queue.shift());
            size--;
        }
    }

    pop() {
        return this.queue.shift();
    }

    top() {
        return this.queue[0];
    }

    empty() {
        return !this.queue.length;
    }
}

7. 二叉树的序列化与反序列化

class Codec {
    serialize(root) {
        if (!root) return 'null';
        return `${root.val},${this.serialize(root.left)},${this.serialize(root.right)}`;
    }

    deserialize(data) {
        let nodes = data.split(',');
        function buildTree() {
            let val = nodes.shift();
            if (val === 'null') return null;
            let node = { val: Number(val), left: null, right: null };
            node.left = buildTree();
            node.right = buildTree();
            return node;
        }
        return buildTree();
    }
}

8. 二叉树的最大深度

function maxDepth(root) {
    if (!root) return 0;
    return 1 + Math.max(maxDepth(root.left), maxDepth(root.right));
}

9. 二叉树的最小深度

function minDepth(root) {
    if (!root) return 0;
    if (!root.left) return 1 + minDepth(root.right);
    if (!root.right) return 1 + minDepth(root.left);
    return 1 + Math.min(minDepth(root.left), minDepth(root.right));
}

10. 路径总和

function hasPathSum(root, targetSum) {
    if (!root) return false;
    if (!root.left && !root.right) return root.val === targetSum;
    return hasPathSum(root.left, targetSum - root.val) || hasPathSum(root.right, targetSum - root.val);
}

这些实现涵盖了问题的核心逻辑,旨在高效地解决每个场景的问题。希望这些代码对您有帮助!
以下是每个问题的 JavaScript 解决方案:


1. 对称二叉树

function isSymmetric(root) {
    function isMirror(t1, t2) {
        if (!t1 && !t2) return true;
        if (!t1 || !t2) return false;
        return t1.val === t2.val && isMirror(t1.left, t2.right) && isMirror(t1.right, t2.left);
    }
    return isMirror(root, root);
}

2. 二叉树的中序遍历

function inorderTraversal(root) {
    let result = [];
    function traverse(node) {
        if (!node) return;
        traverse(node.left);
        result.push(node.val);
        traverse(node.right);
    }
    traverse(root);
    return result;
}

3. 二叉树的层序遍历

function levelOrder(root) {
    if (!root) return [];
    let result = [];
    let queue = [root];

    while (queue.length) {
        let level = [];
        let size = queue.length;
        for (let i = 0; i < size; i++) {
            let node = queue.shift();
            level.push(node.val);
            if (node.left) queue.push(node.left);
            if (node.right) queue.push(node.right);
        }
        result.push(level);
    }
    return result;
}

4. 二叉树的直径

function diameterOfBinaryTree(root) {
    let diameter = 0;

    function depth(node) {
        if (!node) return 0;
        let left = depth(node.left);
        let right = depth(node.right);
        diameter = Math.max(diameter, left + right);
        return 1 + Math.max(left, right);
    }

    depth(root);
    return diameter;
}

5. 二叉树的前序遍历

function preorderTraversal(root) {
    let result = [];
    function traverse(node) {
        if (!node) return;
        result.push(node.val);
        traverse(node.left);
        traverse(node.right);
    }
    traverse(root);
    return result;
}

6. 二叉树的后序遍历

function postorderTraversal(root) {
    let result = [];
    function traverse(node) {
        if (!node) return;
        traverse(node.left);
        traverse(node.right);
        result.push(node.val);
    }
    traverse(root);
    return result;
}

7. 翻转二叉树

function invertTree(root) {
    if (!root) return null;
    [root.left, root.right] = [invertTree(root.right), invertTree(root.left)];
    return root;
}

8. 二叉树的所有路径

function binaryTreePaths(root) {
    let paths = [];
    function constructPaths(node, path) {
        if (node) {
            path += node.val;
            if (!node.left && !node.right) {
                paths.push(path);
            } else {
                path += '->';
                constructPaths(node.left, path);
                constructPaths(node.right, path);
            }
        }
    }
    constructPaths(root, '');
    return paths;
}

9. 二又树的中序遍历(非递归)

function inorderTraversalIterative(root) {
    let result = [];
    let stack = [];
    let current = root;

    while (current || stack.length) {
        while (current) {
            stack.push(current);
            current = current.left;
        }
        current = stack.pop();
        result.push(current.val);
        current = current.right;
    }

    return result;
}

10. 二分图检测

function isBipartite(graph) {
    let colors = Array(graph.length).fill(0);

    function dfs(node, color) {
        if (colors[node] !== 0) return colors[node] === color;
        colors[node] = color;

        for (let neighbor of graph[node]) {
            if (!dfs(neighbor, -color)) return false;
        }
        return true;
    }

    for (let i = 0; i < graph.length; i++) {
        if (colors[i] === 0 && !dfs(i, 1)) return false;
    }
    return true;
}

11. 拓扑排序

function topologicalSort(numCourses, prerequisites) {
    let graph = Array.from({ length: numCourses }, () => []);
    let inDegree = Array(numCourses).fill(0);
    let queue = [];
    let result = [];

    for (let [course, prereq] of prerequisites) {
        graph[prereq].push(course);
        inDegree[course]++;
    }

    for (let i = 0; i < numCourses; i++) {
        if (inDegree[i] === 0) queue.push(i);
    }

    while (queue.length) {
        let course = queue.shift();
        result.push(course);

        for (let neighbor of graph[course]) {
            inDegree[neighbor]--;
            if (inDegree[neighbor] === 0) queue.push(neighbor);
        }
    }

    return result.length === numCourses ? result : [];
}

这些实现涵盖了您列出的每个问题。代码力求简洁清晰,并使用了适当的数据结构和算法来提高效率。希望对您有所帮助!
以下是用 JavaScript 实现的解决方案:


1. 单源最短路径 (Dijkstra 算法)

function dijkstra(graph, start) {
    let distances = Array(graph.length).fill(Infinity);
    distances[start] = 0;
    let visited = new Set();

    while (visited.size < graph.length) {
        let u = -1;
        for (let i = 0; i < graph.length; i++) {
            if (!visited.has(i) && (u === -1 || distances[i] < distances[u])) {
                u = i;
            }
        }

        visited.add(u);

        for (let [v, weight] of graph[u]) {
            distances[v] = Math.min(distances[v], distances[u] + weight);
        }
    }

    return distances;
}

2. 关键连接 (桥检测)

function criticalConnections(n, connections) {
    let graph = Array.from({ length: n }, () => []);
    let discovery = Array(n).fill(-1);
    let low = Array(n).fill(-1);
    let bridges = [];
    let time = 0;

    for (let [u, v] of connections) {
        graph[u].push(v);
        graph[v].push(u);
    }

    function dfs(node, parent) {
        discovery[node] = low[node] = time++;
        for (let neighbor of graph[node]) {
            if (neighbor === parent) continue;
            if (discovery[neighbor] === -1) {
                dfs(neighbor, node);
                low[node] = Math.min(low[node], low[neighbor]);
                if (low[neighbor] > discovery[node]) {
                    bridges.push([node, neighbor]);
                }
            } else {
                low[node] = Math.min(low[node], discovery[neighbor]);
            }
        }
    }

    for (let i = 0; i < n; i++) {
        if (discovery[i] === -1) dfs(i, -1);
    }

    return bridges;
}

3. 判断负权回路 (Bellman-Ford 算法)

function hasNegativeWeightCycle(n, edges) {
    let distances = Array(n).fill(Infinity);
    distances[0] = 0;

    for (let i = 0; i < n - 1; i++) {
        for (let [u, v, weight] of edges) {
            if (distances[u] + weight < distances[v]) {
                distances[v] = distances[u] + weight;
            }
        }
    }

    for (let [u, v, weight] of edges) {
        if (distances[u] + weight < distances[v]) {
            return true;
        }
    }

    return false;
}

4. 判断图中是否存在环

function hasCycle(graph) {
    let visited = new Set();
    let stack = new Set();

    function dfs(node) {
        if (stack.has(node)) return true;
        if (visited.has(node)) return false;

        visited.add(node);
        stack.add(node);

        for (let neighbor of graph[node]) {
            if (dfs(neighbor)) return true;
        }

        stack.delete(node);
        return false;
    }

    for (let node = 0; node < graph.length; node++) {
        if (dfs(node)) return true;
    }

    return false;
}

5. 图的深度优先搜索

function dfs(graph, start) {
    let visited = new Set();
    let result = [];

    function explore(node) {
        if (visited.has(node)) return;
        visited.add(node);
        result.push(node);

        for (let neighbor of graph[node]) {
            explore(neighbor);
        }
    }

    explore(start);
    return result;
}

6. 克隆图

function cloneGraph(node) {
    if (!node) return null;

    let map = new Map();

    function clone(node) {
        if (map.has(node.val)) return map.get(node.val);

        let newNode = { val: node.val, neighbors: [] };
        map.set(node.val, newNode);

        for (let neighbor of node.neighbors) {
            newNode.neighbors.push(clone(neighbor));
        }

        return newNode;
    }

    return clone(node);
}

7. 课程表 (拓扑排序)

function canFinish(numCourses, prerequisites) {
    let graph = Array.from({ length: numCourses }, () => []);
    let inDegree = Array(numCourses).fill(0);

    for (let [course, prereq] of prerequisites) {
        graph[prereq].push(course);
        inDegree[course]++;
    }

    let queue = [];
    for (let i = 0; i < numCourses; i++) {
        if (inDegree[i] === 0) queue.push(i);
    }

    let count = 0;
    while (queue.length) {
        let course = queue.shift();
        count++;
        for (let neighbor of graph[course]) {
            inDegree[neighbor]--;
            if (inDegree[neighbor] === 0) queue.push(neighbor);
        }
    }

    return count === numCourses;
}

8. 最短路径 (Floyd-Warshall 算法)

function floydWarshall(graph) {
    let dist = graph.map(row => [...row]);

    let n = graph.length;
    for (let k = 0; k < n; k++) {
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++) {
                if (dist[i][k] + dist[k][j] < dist[i][j]) {
                    dist[i][j] = dist[i][k] + dist[k][j];
                }
            }
        }
    }

    return dist;
}

9. 图的广度优先搜索

function bfs(graph, start) {
    let visited = new Set();
    let queue = [start];
    let result = [];

    while (queue.length) {
        let node = queue.shift();
        if (visited.has(node)) continue;
        visited.add(node);
        result.push(node);

        for (let neighbor of graph[node]) {
            if (!visited.has(neighbor)) {
                queue.push(neighbor);
            }
        }
    }

    return result;
}

这些实现涵盖了您所列出的所有问题。每种算法选择了高效且直观的方式,适合实际问题的解决。希望对您有所帮助!

标签:node,function,return,Javascript,let,push,题目,数据结构,root
From: https://blog.csdn.net/m0_55049655/article/details/144787796

相关文章

  • Javascript数据结构常见面试题目(全)
    以下是一个前端JavaScript数据结构常见题目框架,可以帮助你快速组织思路并解决问题:框架内容1.数组相关查找与排序:寻找数组的最大/最小值。快速排序、归并排序、冒泡排序。操作:移除重复项:newSet()或双指针法。滑动窗口法:求最大/最小子数组和。二分查找:查找有序数......
  • 题目集7-8总结:智能家居强电电路模拟系统
    一、前言1.1题目背景题目集7和8以智能家居为主题,通过强电电路的模拟设计,引导我们从基本开关电路到多功能调速器和受控设备模拟的深入探索,体现了物联网技术在智能家居中的实际应用。1.2题目特点知识点:涵盖开关逻辑、电路模拟、受控设备特性、并联与串联电路等核心知识点。题......
  • 题目集7-8总结
    家居强电电路模拟程序-3总结一、前言1.1题目概述本题目是家居强电电路模拟系列的第三次迭代,旨在模拟智能家居中的强电电路系统。相比前两次迭代,本次新增了:受控窗帘设备更复杂的电路结构支持多个并联电路串联的情况串联电路包含其他串联电路的场景1.2知识点分析本题......
  • xdoj-指针类别 题目及参考答案
    目录写在前面220题目参考答案231题目参考答案232题目参考答案233题目参考答案235题目参考答案236题目参考答案237题目参考答案470题目参考答案536题目参考答案561题目参考答案660题目参考答案661题目参考答案662题目参考答案663题......
  • 数据结构--顺序表
    目录一、顺序表的定义二、顺序表的实现1.构建顺序表类以及准备内置函数2.顺序表的取值3.顺序表的查找4.顺序表的插入5.顺序表的删除三、整合起来一、顺序表的定义    由n(n≥0)个数据特性相同的元素构成的有限序列称为线性表,当n=0时被称为空表。......
  • [VUE]CALL_AND_RETRY_LAST分配失败-JavaScript堆内存不足 errno134
    使用vscode开发项目,由于项目较大,在运行npmrundev命令后,在一定的时间范围内,对vscode中的代码进行保存后,会自动编译运行,保存几次后就报错,需要重新运行npmrundev,很耗费时间)后报错报错:CALL_AND_RETRY_LASTAllocationfailed-JavaScriptheapoutofmemory(CALL_AND_RETRY_LAS......
  • 2020年全国硕士研究生入学统一考试管理类专业学位联考英语(二)试题-纯享题目版
    ......
  • 软考~系统规划与管理师考试——真题篇——2023年上半年——综合知识——纯享题目版
    文章目录真题(2023-上-01)真题(2023-上-02)真题(2023-上-03)真题(2023-上-04)真题(2023-上-05)真题(2023-上-06)真题(2023-上-07)真题(2023-上-08)真题(2023-上-09)真题(2023-上-10)真题(2023-上-11)真题(2023-上-12)真题(2023-上-13)真题(2023-上-14)真题(2023-上-15)真题(2023-上-16)真题(2023-上-17)真题......
  • 最长公共子序列 题目
    题解暂无,求指导试题描述给定两个小写字母组成的字符串S,T(长度不超过100),问S与T的最长公共子序列。输入要求第一行一个字符串,表示字符串S。第二行一个字符串,表示字符串T。输出要求第一行,输出最长公共子序列的长度。第二行,输出一个字符串,表示最长的公共子序列,答案可能不止一......
  • blog3-题目集7~8
    一、前言:本次的Blog,是电路3和电路4,首先我想说的是在电路2的时候,我并没有拿到满分,直到做到电路3的时候我才发现了电路2缺少的部分,就是嵌套的串联电路,之前是没有考虑在一个T里面还有T的,电路3的一个测试样例这才点醒了我,随后也是修改了电路2的代码,拿到了满分。二、设计与分析:大......