import pandas as pd # 读取原始数据 df = pd.read_excel('D:\\work\\2\\配料原始表.xlsx', sheet_name='Sheet1') # 按品类分组并处理数据 grouped = df.groupby('品类名称') result_dfs = [] for category, group in grouped: # 筛选亏损数据并整理格式 loss_df = group[group['差异金额'] > 0].sort_values(by='差异金额', ascending=False).head(3) loss_df['亏涨类别'] = '亏损' loss_df['序号'] = range(1, len(loss_df) + 1) loss_df = loss_df[['品类名称', '亏涨类别', '序号', '商品名称', '差异金额']] # 筛选涨出数据并整理格式 gain_df = group[group['差异金额'] < 0].sort_values(by='差异金额').head(3) gain_df['亏涨类别'] = '涨出' gain_df['序号'] = range(1, len(gain_df) + 1) gain_df = gain_df[['品类名称', '亏涨类别', '序号', '商品名称', '差异金额']] # 合并该品类的亏损和涨出数据 category_result_df = pd.concat([loss_df, gain_df]) result_dfs.append(category_result_df) # 合并所有品类的数据 result_df = pd.concat(result_dfs) # 将结果写入新的Excel文件 with pd.ExcelWriter('D:\\work\\2\\配料统计表2.xlsx', engine='openpyxl') as writer: result_df.to_excel(writer, sheet_name='Sheet1', index=False)
运行代码后获得一张新的excel表
下面是原始表
标签:涨出,loss,python,excel,df,gain,品类,result From: https://www.cnblogs.com/haha1988/p/18586658