首页 > 编程语言 >基于MATLAB红外和可见光图像融合算法研究

基于MATLAB红外和可见光图像融合算法研究

时间:2024-10-30 20:49:49浏览次数:4  
标签:信息 算法 可见光 融合 红外 MATLAB 图像 目标

红外技术作为人类认识自然、探索自然的一种新的现代工具,已经被各国普遍的应用于生物、医学、地学等科学领域以及军事侦察方面。红外图像直接反映了物体表面温度分布情况,但由于目标的红外辐射十分复杂,而且影响目标红外辐射的因素很多,红外热图像的清晰度远不如可视图像。可见光图像能够很好的描绘场景中各个物体的外形结构,具有较好的轮廓表现力,所以将红外和可见光图像融为一体有非常好的效果。而通过图像融合是实现这一效果的有效方法,融合后的图像可信度更高,模糊较少,可理解性更好,更适合人的视觉及对源图像的进一步分析、理解以及目标检测、识别或跟踪。图像融合充分利用了多个被融合图像中包含的冗余信息和互补信息,同时又不同于一般意义上的图像增强,它是计算机视觉、图像理解领域的一项新技术。

本文针对红外和可见光图像融合算法进行了研究。通过使用计算机图像处理方法,对同一场景的红外图像和可见光图像进行融合处理,得到一副单一的融合图像,它成功包含了两副源图像的信息。本文主要研究了利用MATLAB软件实现对红外和可见光图像的处理和融合,采用对应像素取大值、取小值、平均值,区域能量、区域对比度比较的融合方法,并且对融合结果图像使用信息熵、标准差、平均梯度、空间频率的评价指标进行了分析比较。结果表明,融合结果图像既保留了可见光图像的清晰的轮廓信息,同时也显示了目标物体的表面温度分布情况。

1.1 课题的选题背景及意义

二十一世纪是一个快速发展的科技信息时代,科学技术的发展日新月异,单一的可见光模式逐渐发展成多种传感器模式,传感器的应用已经渗入到许多领域,尤其以成像传感器最为人们所熟悉,人们对图像质量也提出了更高的要求。在日常生活中,普遍采用硬件更新换代来实现品质的提高,但是,在实际的工程应用中,只是硬件的更换往往还不足以实现工程需求。各种传感器具有不同的成像机理、不同的波长范围、不同的工作环境与要求,完成不同的功能。由于单一的传感器获取的信息量有限,往往难以满足实际需求。利用多源数据可以提供对观测目标更加可靠的观察,因此,为了充分利用越来越复杂的多源数据,各种数据融合技术快速发展起来,目的是将多传感器获得的更多信息合并到一个新的数据集中。所以,可通过对得到的图像进行加工和处理来达到预定目标,这个过程即是图像处理技术。计算机软件技术和数学算法正是这项技术的基础,也是其重点。图像处理技术是一门内容十分丰富的学科,在其发展过程中,已经被分成了多个学科分支,收到诸多学者和研究人员的青睐和重视。

    图像传感器种类繁多,表1-1列出了常用图像传感器及其性能特点。

红外技术[1-2]是20世纪发展起来的新兴应用技术。近50年来,世界各国争相发展利用红外线探测目标的技术,并将之应用于军事领域。近年来一些国家将其大规模推向民用领域。在军事上[3],红外探测用于制导、火控跟踪、警戒、目标侦察、武器热瞄准器、舰船导航、空降导航等。在准军事领域,可广泛应用于安全警戒、刑侦、森林防火和消防、大气环境检测等方面。在民用领域,广泛应用于工业设备监控、安全监视、交通管理、救灾、遥感以及医学热诊断技术等。在日常生活中,我们所见到的图像绝大部分都是可见光图像(如电视机图像、数码照相机成像等),可见光图像比较客观和真实地展现了目标(物或者景)的空间轮廓信息,可以较好的从背景环境中分离开来,有较高的对比度,这一点在图像视觉信息中显得非常重要,也是可见光图像的优势之所在。

    可见光图像和红外图像都具有其固有的优势和缺陷,它们之间存在着显著的差异,而这些差异正好弥补了彼此的缺陷。可见光图像携带的准确丰富的物体空间形态信息,与人眼对目标场景的直接成像状态一致;红外图像是凭借红外探测器而获得的图像信息,而这些信息都是人眼无法直接获取的,但却表征了目标物体的表面温度分布情况,将原本不可见的特征转换为图像形式,成为人眼可以接受的视觉信息。然而,由于红外图像不能如实呈现目标的空间轮廓信息,这给观察者(或者机器视觉系统)带来一些困扰,观察者只能看到目标场景中的温度分布情况,却因为目标与环境对比不明显而无法准确无误的分辨目标物体本身。可见,可见光图像对目标的空间轮廓的完美显示正好弥补了红外图像的这一缺点,若将两者的互补信息融合在一起,那就可以同时获得目标的空间边缘信息以及表面温度分布信息。通过对可见光图像和红外图像采用图像融合处理,将两者的互补信息整合,其输出的融合图像集两者优势为一体,既展示了目标物体的空间细节情况,又将其表面温度分布细节转换为可视信息,这对观察者而言,图像更加全面的展示了目标物体所承载的信息量,使得目标物体的空间结构和局部温度分布都一目了然。

1.2 图像融合技术的研究状况

图像融合[4-6]技术是在兴起于70年代末的信息融合技术的基础上发展起来的图像处理新技术。1979年,Daliy[7]等人首先把雷达图像和Landsat-MSS图像的复合图像应用于地质解释,其处理过程可以看作是最简单的图像融合。1981年,Lane和Todd[8]进行了Landsat-RBV和MSS图像数据的融合试验。到80年代中后期,图像融合技术开始引起人们的关注,陆续有人将图像融合技术应用于遥感多谱图像的分析和处理,如1985 年,Cliche和Bonn[9]将Landsat-TM的多光谱遥感图像与SPOT卫星得到的高分辨率图像进行融合,90年代以后,随着多颗遥感雷达卫星[30] JERS-1, ERS-1,Radarsat等的发射升空,图像融合技术成为遥感图像处理和分析中的研究热点之一。对遥感图像进行融合处理的目的主要有锐化图像、改善几何矫正、色彩矫正、改善分类特性、弥补某种图像中丢失的数据、检测/观测大地环境的变化等等。其采取的融合方法主要有IHS变换、平均、加权平均、差分及比率、PCA(主分量分析:Principal Component Analysis),高通滤波[29]等。这些方法在进行融合处理时都不对参加融合的图像进行分解变换,融合处理只是在一个层次上进行的,因此均属于早期的图像融合方法。自从2000年美国波音公司完成多源信息融合的实验成功实现互补信息的整合,从此,信息融合技术开始得到发展,图像融合技术作为信息融合的一个重要分支,也相继在遥感、医学治疗等领域得到重视和应用。

国内对图像融合技术研究虽然起步较晚,但已有不少研究机构和大学正在从事这一领域的研究和探讨,例如中科院遥感所、武汉测绘大学、中科院上海技术物理研究所、上海交通大学等单位。1990年10月4日,由我国和巴西联合研制的“资源一号”卫星发射升空,卫星上安装了我国自行研制的CCD相机和红外多光谱扫描仪,这两种航天遥感器之间可进行图像融合,大大扩展了卫星的遥感应用范围。图1-2为战场图像的融合。

标签:信息,算法,可见光,融合,红外,MATLAB,图像,目标
From: https://blog.csdn.net/2401_84801422/article/details/143374641

相关文章

  • 基于MATLAB多参数结合火焰识别系统
    一、课题介绍本设计为基于MATLAB的火焰烟雾火灾检测系统。传统的采用颜色的方法,误识别大,局限性强。结合火焰是实时动态跳跃的,采用面积增长率,角点和圆形度三个维度相结合的方式判断是否有火焰。该设计测试对象为视频,通过下一帧和上一帧的差异发现是否有火情,并可发出语音报警。......
  • 基于MATLAB仿真实现图像去噪
    摘要  数字图像处理是一门新兴技术,随着计算机硬件的发展,其处理能力的不断增强,数字图像的实时处理已经成为可能。由于数字图像处理的各种算法的出现,图像处理学科在飞速发展的同时逐渐向其他学科交叉渗透。数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技......
  • 基于MATLAB的人体姿势的检测课程设计
    设计原理首先利用统计的方法得到背景模型,并实时地对背景模型进行更新以适应光线变化和场景本身的变化,用形态学方法和检测连通域面积进行后处理,消除噪声和背景扰动带来的影响,在HSV色度空间下检测阴影,得到准确的运动目标。噪声的影响,会使检测结果中出现一些本身背景的区域像素......
  • 【信奥赛·算法基础】插入排序:算法解析与C++实现
    序言插入排序(InsertionSort)是一种简单的排序算法,就像是我们在打扑克牌时,整理手中牌的过程。一、基本原理插入排序的基本思想是:将待排序的元素插入到已经有序的部分序列中合适的位置,直到所有元素都插入完毕,整个序列就变为有序序列。二、算法步骤从第二个元素开始(假设第......
  • Matlab之App Designer simulink模型调用及仿真结果显示在GUI界面上
    一、背景介绍在利用MatlabAppDesigner成功构建出直观的用户图形界面(GUI)后,我们可以采用代码调用Simulink模型,实现模型的调用与执行,并将分析结果实时反馈至GUI界面上。这一做法极大地增强了用户与应用之间的交互体验。本文将以案例讲解的方式,详细阐述如何通过MatlabAppDesig......
  • 排序算法在最坏情况下的性能差异:深入分析
    目录1.排序算法简介2.最坏情况示例分析2.1插入排序2.2归并排序2.3快速排序2.4堆排序3.性能差异与优化策略4.拓展知识:算法选择与优化5.结语        在软件工程中,排序算法是数据处理的基石。不同的排序算法在不同情况下表现出不同的性能。本文将通过......
  • 堆排序算法和Topk思想
    目录1>>导言2>>堆排序2.1>>通过堆结构实现堆排序2.2>>堆思想实现排序3>>Topk思想4>>代码5>>结语1>>导言    今天重点内容就是带着大家实现堆排序和Topk,堆排序分为两种,一种是直接调用堆的数据结构来实现的,另一种就是通过堆的思想实现的,Topk就是在一个数组......
  • H7-TOOL自制Flash读写保护算法系列,为兆易创新GD32E23X制作使能和解除算法,支持在线烧录
    说明:很多IC厂家仅发布了内部Flash算法文件,并没有提供读写保护算法文件,也就是选项字节算法文件,需要我们制作。实际上当前已经发布的TOOL版本,已经自制很多了。但是依然有些厂家还没自制,所以陆续开始为这些厂家提供读写保护支持。近期已经自制了STM32H7全系列,N32G003,N32G031,  S......
  • 《贪婪算法实战:寻找最短无序连续子数组的深度解析与实现》
    ......
  • 百度二面算法:合法的括号字符串(贪心解法)
    目录标题1.题目1.1示例2.利用贪心算法求解2.1代码结构分析2.1.1代码优缺点2.1.2星号的角色分析2.1.2.1处理星号的逻辑2.1.2.2整体逻辑2.1.2.3代码逻辑总结2.2贪心的策略体现2.2.1贪心策略的应用1.题目给定一个字符串s,字符串......