YOLOv11全网最新创新点改进系列:免费送!!!改进且跑通的源码!!融入CBAM注意力,将通道注意力和空间注意力相结合,嘎嘎提升V11算法,叫叫首,改进速度遥遥领先,粉丝水文速度遥遥领先!!!
所有改进代码均经过实验测试跑通!截止发稿时YOLOv11已改进40+!自己排列组合2-4种后,考虑位置不同后可排列组合上千万种!改进不重样!!专注AI学术,关注B站up主:Ai学术叫叫兽!
购买相关资料后畅享一对一答疑!
一、YOLOv11创新内容
YOLOv11是由Ultralytics公司开发的新一代目标检测算法,它在之前YOLO版本的基础上进行了显著的架构和训练方法改进。以下是YOLOv11的一些详细介绍和创新点:
-
增强的特征提取:YOLOv11采用了改进的骨干网络和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务的性能。
-
优化效率和速度:引入了精细的架构设计和优化的训练流程,提供了更快的处理速度,并在准确性和性能之间保持了最佳平衡。
-
更少参数下的高准确度:YOLOv11在COCO数据集上实现了更高的平均精度均值(mAP),同时比YOLOv8少用了22%的参数,使其在不牺牲准确性的情况下具有计算效率。
-
跨环境的适应性:YOLOv11可以无缝部署在各种环境中,包括边缘设备、云平台和支持NVIDIA GPU的系统,确保了最大的灵活性。
-
支持广泛的任务:YOLOv11不仅支持目标检测,还支持实例分割、图像分类、姿态估计和定向目标检测(OBB),满足一系列计算机视觉挑战。
YOLOv11的网络结构和关键创新点包括:
- C3k2机制:这是一种新的卷积机制,它在网络的浅层将c3k参数设置为False,类似于YOLOv8中的C2f结构。
- C2PSA机制:这是一种在C2机制内部嵌入的多头注意力机制,类似于在C2中嵌入了一个PSA(金字塔空间注意力)机制。
- 深度可分离卷积(DWConv):在分类检测头中增加了两个DWConv,这种卷积操作减少了计算量和参数量,提高了模型的效率。
- 自适应锚框机制:自动优化不同数据集上的锚框配置,提高了检测精度。
- EIoU损失函数:引入了新的EIoU(Extended IoU)损失函数,考虑了预测框与真实框的重叠面积,长宽比和中心点偏移,提高了预测精度。
YOLOv11的训练过程包括数据准备、数据增强、超参数优化和模型训练几个阶段。它使用混合精度训练技术,在不降低模型精度的情况下,加快了训练速度,并减少了显存的占用。
在部署方面,YOLOv11支持导出为不同的格式,如ONNX、TensorRT和CoreML,以适应不同的部署平台。它还采用了多种加速技术,如半精度浮点数推理(FP16)、批量推理和硬件加速,以提升推理速度。
YOLOv11的成功标志着目标检测技术又迈出了重要的一步,它为开发者提供了更强大的工具来应对日益复杂的视觉检测任务。
二、YOLO简史一次说清
不要纠结于此,论文中用不到,大概了解即可。
YOLO:简史
2015年提出YOLO(你只看一次),一个流行的对象检测和图像分割模型,是由华盛顿大学的约瑟夫·雷德蒙和阿里·法尔哈迪开发的,因其高速度和准确性而迅速走红。
2016 年发布的YOLOv2 通过纳入批量归一化、锚框和维度集群改进了原始模型。
2018 年推出的YOLOv3 使用更高效的骨干网络、多锚和空间金字塔池进一步增强了模型的性能。
YOLOv4于2020年发布,引入了马赛克数据增强、新的无锚探测头和新的损失函数等创新。
YOLOv5进一步提高了模型的性能,并增加了超参数优化、集成实验跟踪和自动导出为常用导出格式等新功能。
YOLOv6于 2022 年由美团开源,目前已用于该公司的许多自主配送机器人。
YOLOv7增加了额外的任务,如 COCO 关键点数据集的姿势估计。
YOLOv8是Ultralytics于2023年发布的。YOLOv8引入了新的功能和改进,以增强性能、灵活性和效率,支持全方位的视觉人工智能任务。
YOLOv9 引入了可编程梯度信息 (PGI) 和广义高效层聚合网络 (GELAN) 等创新方法。
YOLOv10是由清华大学的研究人员使用该软件包创建的。 UltralyticsPython 软件包创建的。该版本通过引入端到端头(End-to-End head),消除了非最大抑制(NMS)要求,实现了实时目标检测的进步。
YOLO11
标签:全网,检测,模型,YOLO,YOLOv8,读懂,改进,YOLOv11 From: https://blog.csdn.net/weixin_51692073/article/details/142885594