目录
项目介绍
- 租房者模块
账户管理:注册、登录、个人信息编辑、密码更改、账户注销。
房源浏览:查看不同类型和地区的房源,筛选、排序功能(如价格、面积、需要做定位功能!等)。
收藏与预约:收藏心仪房源,预约看房时间。
租房申请:提交租房申请,包括填写租赁信息和上传必要文件。
消息系统:接收系统通知和房产中介的回复,论坛交流。
评价反馈:对看过的房源和交易过程进行评价和反馈。
数据分析:1.价格图表(依据地区,房型不同)趋势走向图(增加需要有数据分析图)!
2.人数(房间被租过的次数)或近几年此地区租房总人数。 - 出租者模块
(这个模块可能会包含散户,不只房产中介)
1账户管理:
提供注册功能,允许房产中介和散户创建账户。设计登录机制,保障账户信息安全、允许用户管理个人信息,包括更新联系方式、密码等、实现认证流程,确保房产中介和散户的真实性。
房源管理:创建房源发布系统,使中介和散户能够发布新房源、实现房源信息编辑功能,让用户更新房源状态和详情、提供房源下架选项,使不再出租/售的房源能够及时撤下、允许上传房源图片及输入详细描述,提升房源信息的完整性。
预约管理:设计一个预约系统,使租房者能够预约看房、让中介和散户查看和确认即将到来的预约、提供取消预约功能,便于管理不再需要的看房预约。
申请处理:实施租房申请审核流程,确保租房者符合要求、设立通信渠道,使中介和散户能够与潜在租房者进行沟通和协商。
数据分析:提供房源浏览量和预约量等关键数据的统计和分析、分析不同地区的需求量,以及不同房型的需求量、总结并展示总需求量数据,帮助用户理解市场动态。(例如一个城市的数据,不同地区需求量,不同房型需求量,总需求量有一个数据分析图!!)
客户关系管理:记录并跟踪客户的交易历史、基于客户历史行为提供个性化服务和建议。 - 系统管理员模块
用户审核:审核新注册的租房者和房产中介账户。
房源审核:审核房产中介发布的房源信息,确保信息真实性和合规性。
报表统计:生成用户活动、房源热度、交易量等统计报表。
系统维护:更新和维护系统功能,确保系统稳定运行。
用户反馈处理:处理用户的投诉和建议,改进服务。
权限管理:设置不同用户角色的访问和操作权限。
技术栈
基于Python大数据技术进行网络爬虫的设计,框架使用Scrapy.
系统设计支持以下技术栈
前端开发框架:vue.js
数据库 mysql 版本不限
后端语言框架支持:
1 java(SSM/springboot)-idea/eclipse
2.python(flask/django)–pycharm/vscode
3.Nodejs+Vue.js -vscode
4.php(thinkphp/laravel)-hbuilderx/vscode
数据库工具:Navicat/SQLyog等都可以
具体实现截图
Scrapy爬虫框架
Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
#协同过滤算法
协同过滤推荐技术一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息。
关键技术和使用的工具环境等的说明
MySQL是一种关系型数据库管理系统,是大部分程序员接触的第一款关系型数据库。它相对于其他数据库来说相当轻量级,而且更加灵活。在大量的web工程中,经常作为首选的数据库,因为其开源免费的特点被大量的开发人员所使用。而且在大数据背景下,其海量的集群更为web的高并发提供了良好的后盾。
虽然Spark同样是大数据的框架和计算模型,但其实它与hadoop是相辅相成的,而且可以灵活的部署在hadoop之上,共享hadoop的文件系统。并且在数据处理上更为高效和方便、灵活。在数据量越来越庞大的现在,基于内存的spark可以很快的得到处理的结果,甚至现在已经可以支持近实时的数据处理。使得大数据的价值更加凸显。
Hadoop是由Apache基金会开源的分布式的大数据基础系统。
用户可以在不知道分布式基础设施的细节的情况下开发分布式程序。可以利用无数台节点集群进行高速计算和文件的多副本容错存储。
ECharts是百度开源的一个数据可视化框架,是web端的js框架,可以很方便的进行搭建数据可视化前端界面。官网的文档尤其简洁,极易上手开发,使得海量数据处理完成后,可以方便高效快速的进行可视化处理,直接作用于决策。使得数据的价值得到了直观的展示和提升。目前支持多种图形的绘制。
解决的思路
该系统架构主要依托scrapy框架进行架构,后台采用python动态网页语言编写,使用scrapy框架技术从网站上爬取数据,采用java/python/php/nodejs部署系统环境,使用pyhcarm作为系统的开发平台,在数据库设计和管理上使用MySQL。在人机交互的过程中,客户端不直接与数据库交互,而是通过组件与中间层建立连接,再由中间层与数据库交互。通过设计良好的框架可以减轻重新建立解决复杂问题方案的负担和精力,并且它可以被扩展以进行内部的定制化,有强大的用户社区来支持它,所以框架通常能很好的解决一个问题。
开发流程
在对大数据的深入研究后,根据其前景,包括数据方面的发展与价值,本套系统从用户痛点需求进行分析入手,对系统架构进行了设计,随后完成了系统方面的具体设计,最后为数据入库对DB进行配置和设计,最后到系统搭建和编码实现,分别为后台数据处理,在数据转换方面包括数据的clean、临时存储落地,数据经过完全处理后入库,和前台的ECharts可视化系统,对处理后落地的数据使用饼图进行可视化展现。对系统进行功能叙述、进行详细的系统分析、进行整体的结构性框架设计和对系统详细的设计、最终完成系统的搭建部分和对系统进行的单元测试这几个方面描述了整个系统的流程。
爬虫核心代码展示
import scrapy
import pymysql
import pymssql
from ..items import xiangmuItem
import time
import re
import random
import platform
import json
import os
from urllib.parse import urlparse
import requests
import emoji
class xiangmuSpider(scrapy.Spider):
name = 'xiangmuSpider'
spiderUrl = 'https://url网址'
start_urls = spiderUrl.split(";")
protocol = ''
hostname = ''
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# 列表解析
def parse(self, response):
_url = urlparse(self.spiderUrl)
self.protocol = _url.scheme
self.hostname = _url.netloc
plat = platform.system().lower()
if plat == 'windows_bak':
pass
elif plat == 'linux' or plat == 'windows':
connect = self.db_connect()
cursor = connect.cursor()
if self.table_exists(cursor, 'xiangmu') == 1:
cursor.close()
connect.close()
self.temp_data()
return
list = response.css('ul.subject-list li.subject-item')
for item in list:
fields = xiangmuItem()
fields["laiyuan"] = self.remove_html(item.css('div.pic a.nbg::attr(href)').extract_first())
if fields["laiyuan"].startswith('//'):
fields["laiyuan"] = self.protocol + ':' + fields["laiyuan"]
elif fields["laiyuan"].startswith('/'):
fields["laiyuan"] = self.protocol + '://' + self.hostname + fields["laiyuan"]
fields["fengmian"] = self.remove_html(item.css('div.pic a.nbg img::attr(src)').extract_first())
fields["xiaoshuoming"] = self.remove_html(item.css('div.info h2 a::attr(title)').extract_first())
detailUrlRule = item.css('div.pic a.nbg::attr(href)').extract_first()
if self.protocol in detailUrlRule:
pass
elif detailUrlRule.startswith('//'):
detailUrlRule = self.protocol + ':' + detailUrlRule
else:
detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRule
fields["laiyuan"] = detailUrlRule
yield scrapy.Request(url=detailUrlRule, meta={'fields': fields}, callback=self.detail_parse)
# 详情解析
def detail_parse(self, response):
fields = response.meta['fields']
try:
if '(.*?)' in '''div#info span a::text''':
fields["zuozhe"] = re.findall(r'''div#info span a::text''', response.text, re.S)[0].strip()
else:
if 'zuozhe' != 'xiangqing' and 'zuozhe' != 'detail' and 'zuozhe' != 'pinglun' and 'zuozhe' != 'zuofa':
fields["zuozhe"] = self.remove_html(response.css('''div#info span a::text''').extract_first())
else:
fields["zuozhe"] = emoji.demojize(response.css('''div#info span a::text''').extract_first())
except:
pass
# 去除多余html标签
def remove_html(self, html):
if html == None:
return ''
pattern = re.compile(r'<[^>]+>', re.S)
return pattern.sub('', html).strip()
# 数据库连接
def db_connect(self):
type = self.settings.get('TYPE', 'mysql')
host = self.settings.get('HOST', 'localhost')
port = int(self.settings.get('PORT', 3306))
user = self.settings.get('USER', 'root')
password = self.settings.get('PASSWORD', '123456')
try:
database = self.databaseName
except:
database = self.settings.get('DATABASE', '')
if type == 'mysql':
connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
else:
connect = pymssql.connect(host=host, user=user, password=password, database=database)
return connect
# 断表是否存在
def table_exists(self, cursor, table_name):
cursor.execute("show tables;")
tables = [cursor.fetchall()]
table_list = re.findall('(\'.*?\')',str(tables))
table_list = [re.sub("'",'',each) for each in table_list]
if table_name in table_list:
return 1
else:
return 0
系统设计
系统设计与网络爬虫开发,包括:设计系统架构,包括数据采集、处理、存储和可视化模块。编写网络爬虫代码,实现对目标网站的数据爬取
数据处理、分析,数据可视化与系统测试
对爬取的数据进行清洗和预处理,使用统计进行数据分析,开发数据可视化界面,使分析结果直观呈现。以及进行系统测试,确保所有模块稳定运行。
技术选择方面尽量选择比较成熟可靠的技术,保证系统的可靠性、安全性、可用性。通过论证,在现有技术的情况下基本上可以实现上述需求。
尽量选用正版软件和操作系统,保护知识产权,满足企业发展的要求。
论文书写大纲
绪论
1.系统分析
1.1需求分析
1.2所采用的技术关键
2系统总体设计
2.1总体功能
2.2处理流程设计
3系统详细设计
3.1概念结构设计
3.2数据库设计
3.3数据模块设计
4系统调试与测试
4.1测试环境简介
4.2测试目标
4.3测试方法
4,4程序测试
5结论
参考文献
致谢
详细视频演示
请联系我获取更详细的演示视频