首页 > 编程语言 >Python轴承故障诊断 (四)基于EMD-CNN的故障分类

Python轴承故障诊断 (四)基于EMD-CNN的故障分类

时间:2024-09-26 19:52:26浏览次数:3  
标签:EMD plt 1024 Python train CNN import data

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

三十多个开源数据集 | 故障诊断再也不用担心数据集了!

Python轴承故障诊断 (一)短时傅里叶变换STFT-CSDN博客

Python轴承故障诊断 (二)连续小波变换CWT-CSDN博客

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

前言

本文基于凯斯西储大学(CWRU)轴承数据,进行经验模态分解EMD的介绍与数据预处理,最后通过Python实现EMD-CNN对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

经验模态分解EMD的原理可以参考如下:   

Python轴承故障诊断 (三)经验模态分解EMD-CSDN博客

1 经验模态分解EMD的Python示例

第一步,Python 中 EMD包的下载安装:


# 下载
pip install EMD-signal

# 导入
from PyEMD import EMD

切记,很多同学安装失败,不是pip install EMD,也不是pip install PyEMD, 如果 pip list 中 已经有 emd,emd-signal,pyemd包的存在,要先 pip uninstall 移除相关包,然后再进行安装。

第二步,导入相关包


importnumpyasnp
from PyEMD import EMD
importmatplotlib.pyplotasplt
importmatplotlib
matplotlib.rc("font", family='Microsoft YaHei')

第三步,生成一个信号示例


t = np.linspace(0, 1, 1000)
signal = np.sin(11*2*np.pi*t*t) + 6*t*t

第四步,创建EMD对象,进行分解


emd = EMD()
# 对信号进行经验模态分解
IMFs = emd(signal)

第五步,绘制原始信号和每个本征模态函数(IMF)

plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, signal, 'r')
plt.title("原始信号")

fornum, imfinenumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1))

plt.show()

2 轴承故障数据的预处理

2.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

2.2 制作数据集和对应标签

第一步, 生成数据集

第二步,制作数据集和标签

# 制作数据集和标签
import torch

# 这些转换是为了将数据和标签从Pandas数据结构转换为PyTorch可以处理的张量,
# 以便在神经网络中进行训练和预测。

def make_data_labels(dataframe):
    '''
        参数 dataframe: 数据框
        返回 x_data: 数据集     torch.tensor
            y_label: 对应标签值  torch.tensor
    '''
    # 信号值
    x_data = dataframe.iloc[:,0:-1]
    # 标签值
    y_label = dataframe.iloc[:,-1]
    x_data = torch.tensor(x_data.values).float()
    y_label = torch.tensor(y_label.values, dtype=torch.int64)  # 指定了这些张量的数据类型为64位整数,通常用于分类任务的类别标签
    return x_data, y_label

# 加载数据
train_set = load('train_set')
val_set = load('val_set')
test_set = load('test_set')

# 制作标签
train_xdata, train_ylabel = make_data_labels(train_set)
val_xdata, val_ylabel = make_data_labels(val_set)
test_xdata, test_ylabel = make_data_labels(test_set)
# 保存数据
dump(train_xdata, 'trainX_1024_10c')
dump(val_xdata, 'valX_1024_10c')
dump(test_xdata, 'testX_1024_10c')
dump(train_ylabel, 'trainY_1024_10c')
dump(val_ylabel, 'valY_1024_10c')
dump(test_ylabel, 'testY_1024_10c')

2.3 故障数据的EMD分解可视化

选择正常信号和 0.021英寸内圈、滚珠、外圈故障信号数据来做对比

第一步,导入包,读取数据

import numpy as np
from scipy.io import loadmat
import numpy as np
from scipy.signal import stft
import matplotlib.pyplot as plt
import matplotlib
matplotlib.rc("font", family='Microsoft YaHei')

# 读取MAT文件  
data1 = loadmat('0_0.mat')  # 正常信号
data2 = loadmat('21_1.mat') # 0.021英寸 内圈
data3 = loadmat('21_2.mat') # 0.021英寸 滚珠
data4 = loadmat('21_3.mat') # 0.021英寸 外圈
# 注意,读取出来的data是字典格式,可以通过函数type(data)查看。

第二步,数据集中统一读取 驱动端加速度数据,取一个长度为1024的信号进行后续观察和实验


# DE - drive end accelerometer data 驱动端加速度数据
data_list1 = data1['X097_DE_time'].reshape(-1)
data_list2 = data2['X209_DE_time'].reshape(-1)  
data_list3 = data3['X222_DE_time'].reshape(-1)
data_list4 = data4['X234_DE_time'].reshape(-1)
# 划窗取值(大多数窗口大小为1024)
time_step= 1024
data_list1 = data_list1[0:time_step]
data_list2 = data_list2[0:time_step]
data_list3 = data_list3[0:time_step]
data_list4 = data_list4[0:time_step]

第三步,进行数据可视化


plt.figure(figsize=(20,10))
plt.subplot(2,2,1)
plt.plot(data_list1)
plt.title('正常')
plt.subplot(2,2,2)
plt.plot(data_list2)
plt.title('内圈')
plt.subplot(2,2,3)
plt.plot(data_list3)
plt.title('滚珠')
plt.subplot(2,2,4)
plt.plot(data_list4)
plt.title('外圈')
plt.show()

第四步,首先对正常数据进行EMD分解

import numpy as np
import matplotlib.pyplot as plt
from PyEMD import EMD

t = np.linspace(0, 1, time_step)
data = np.array(data_list1)
# 创建 EMD 对象
emd = EMD()

# 对信号进行经验模态分解
IMFs = emd(data)

# 绘制原始信号和每个本征模态函数(IMF)
plt.figure(figsize=(15,10))
plt.subplot(len(IMFs)+1, 1, 1)
plt.plot(t, data, 'r')
plt.title("Original signal", fontsize=10)

for num, imf in enumerate(IMFs):
    plt.subplot(len(IMFs)+1, 1, num+2)
    plt.plot(t, imf)
    plt.title("IMF "+str(num+1), fontsize=10)
    # 增加第一排图和第二排图之间的垂直间距
plt.subplots_adjust(hspace=0.4, wspace=0.2)
plt.show()

其次,内圈故障EMD分解:

然后,滚珠故障EMD分解:

最后,外圈故障EMD分解:

注意,在信号的制作过程中,信号长度的选取比较重要,选择信号长度为1024,既能满足信号在时间维度上的分辨率,也能在后续的EMD分解中分解出数量相近的IMF分量,为进一步做故障模式识别打下基础。

2.4 故障数据的EMD分解预处理

对于EMD分解出的IMF分量个数,并不是所有的样本信号都能分解出8个分量,需要做一下定量分析:

import numpy as np
from PyEMD import EMD

# 加载训练集
train_xdata = load('trainX_1024_10c')
data = np.array(train_xdata)

# 创建 EMD 对象
emd = EMD()

print("测试集:", len(data))
count_min = 0
count_max = 0
count_7 = 0
# 对数据进行EMD分解
for i in range(1631):
    imfs = emd(data[i], max_imf=8)  # max_imf=8
    if len(imfs) > 8 :
        count_max += 1
    elif len(imfs) < 7:
        count_min += 1
    elif len(imfs) == 7:
        count_7 += 1

print("分解结果IMF大于8:", count_max)
print("分解结果IMF小于7:", count_min)
print("分解结果IMF等于7:", count_7)

由结果可以看出,大部分信号样本 都分解出8个分量,将近1/3的信号分解的不是8个分量。EMD设置不了分解出模态分量的数量(函数自适应),为了使一维信号分解,达到相同维度的分量特征,有如下3种处理方式:

  • 删除分解分量不统一的样本(少量存在情况可以采用);

  • 对于分量个数少的样本采用0值或者其他方法进行特征填充,使其对齐其他样本分量的维度(向多兼容);

  • 合并分量数量多的信号(向少兼容);

本文采用第二、三条结合的方式进行预处理,即删除分量小于7的样本,对于分量大于7的样本,把多余的分量进行合并,使所有信号的分量特征保持同样的维度。

3 基于EMD-CNN的轴承故障诊断分类

下面基于EMD分解后的轴承故障数据,通过CNN进行一维卷积作为的分类方法进行讲解:

3.1 训练数据、测试数据分组,数据分batch


import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 有GPU先用GPU训练

# 加载数据集
def dataloader(batch_size, workers=2):
    # 训练集
    train_xdata = load('trainX_1024_10c')
    train_ylabel = load('trainY_1024_10c')
    # 验证集
    val_xdata = load('valX_1024_10c')
    val_ylabel = load('valY_1024_10c')
    # 测试集
    test_xdata = load('testX_1024_10c')
    test_ylabel = load('testY_1024_10c')

    # 加载数据
    train_loader = Data.DataLoader(dataset=Data.TensorDataset(train_xdata, train_ylabel),
                                   batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    val_loader = Data.DataLoader(dataset=Data.TensorDataset(val_xdata, val_ylabel),
                                 batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    test_loader = Data.DataLoader(dataset=Data.TensorDataset(test_xdata, test_ylabel),
                                  batch_size=batch_size, shuffle=True, num_workers=workers, drop_last=True)
    return train_loader, val_loader, test_loader

batch_size = 32
# 加载数据
train_loader, val_loader, test_loader = dataloader(batch_size)

3.2 定义EMDVGG1d网络模型

3.3 设置参数,训练模型

200个epoch,准确率将近96%,用浅层的VGG效果明显,继续调参可以进一步提高分类准确率。

代码、数据整理如下:

图片

标签:EMD,plt,1024,Python,train,CNN,import,data
From: https://blog.csdn.net/2402_85668383/article/details/142573914

相关文章

  • systemd socket 实现按需启动
    当使用systemd按需启动某套接字进程后,其图示大致如下:当需要访问该服务时候,systemd会接收请求流量,而后启动后端真实的服务,最后转发该流量,并且关闭原始套接字,图示如下:实现一个socket步骤所谓的按需启动,其实是systemd下的socket配置单元,其命名规则以.socket为后缀,主要服务于套......
  • Python工程和科学计算1简介
    1简介本章简要介绍了Python编程语言的可扩展性、应用领域和功能。如果您需要在科学工作中进行大量计算,并希望以图形化的方式呈现计算结果,那么您应该认真考虑使用Python。Python是一种编程语言,其功能与MATLAB相似,且是科学计算目前用户最多的首选语言。1.1开发环境1.1.1......
  • [深度学习]卷积神经网络CNN
    1图像基础知识importnumpyasnpimportmatplotlib.pyplotasplt#图像数据#img=np.zeros((200,200,3))img=np.full((200,200,3),255)#可视化plt.imshow(img)plt.show()#图像读取img=plt.imread('img.jpg')plt.imshow(img)plt.show()2CNN概述卷积层conv+......
  • python打包whl文件
    在python中,使用setuptools库创建wheel包确保已安装wheel和setuptools#使用piplist查看已经安装的包piplist如果没有,就用下面的命令安装pipinstallwheelsetuptools在当前路径创建一个aaa的文件夹 在aaa里创建一个__init__.py的文件,内容如下classtest_......
  • python字符串
    1定义字符串text="Hello,World!"2多行字符串multi_line_text="""Thisisamulti-linestring."""3 字符串拼接greeting="Hello"name="Alice"message=greeting+","+name+"!"4......
  • (开题)flask框架宠物上门服务系统(程序+论文+python)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景在快节奏的现代生活中,宠物已成为许多家庭的重要成员,它们不仅是忠诚的伴侣,更是情感的寄托。然而,随着工作压力的增加和生活方式的转变,许多宠......
  • (开题)flask框架宠物医院管理系统(程序+论文+python)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着宠物饲养的普及和宠物主人对宠物健康关注度的提升,宠物医疗行业迎来了前所未有的发展机遇。然而,传统的宠物医院管理模式在应对日益增长......
  • (开题)flask框架大学生企业推荐系统(程序+论文+python)
    本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。系统程序文件列表开题报告内容研究背景随着高等教育的普及,大学生群体日益庞大,就业市场竞争也日益激烈。传统的人才招聘方式往往依赖于招聘网站的海量信息筛选和线下招聘会,这不仅......
  • python 修改cmd窗口标题
    python相关学习资料: https://edu.51cto.com/video/3502.html https://edu.51cto.com/video/3832.html https://edu.51cto.com/video/1158.htmlPython修改CMD窗口标题在编程过程中,我们经常需要在命令行界面(CMD)中运行Python脚本。有时,为了便于区分不同的命令行窗......
  • python使用win32gui、win32con窗口函数功能及参数意义
    使用python设置窗口显示、最大化、最小化、隐藏的时候,需要win32gui.ShowWindow(hwnd,win32con.SW_HIDE),那么对于的参数如下:ShowWindow函数的参数有:1.hWnd:窗口句柄,用于标识要操作的窗口;2.nCmdShow:指定窗口如何显示,可以是以下值:SW_HIDE:隐藏窗口并**其他窗口。nCmdShow=0。SW_......