首页 > 编程语言 >基于python数据挖掘技术的线上招聘信息数据可视化分析系统 q3122-- Scrapy爬虫

基于python数据挖掘技术的线上招聘信息数据可视化分析系统 q3122-- Scrapy爬虫

时间:2024-09-26 14:53:48浏览次数:12  
标签:python fields self 系统 爬虫 -- 数据挖掘 import 数据

目录

项目介绍

基于数据挖掘技术的线上招聘信息分析系统旨在通过应用先进的数据分析方法,为求职者和招聘者提供更加高效、精准的招聘服务。该系统具备强大的信息处理能力,能够从海量的招聘数据中提取有价值的信息,揭示市场趋势和职位需求。对于求职者而言,系统提供了实时的招聘信息浏览和个人收藏功能,使得寻找合适工作变得更加便捷。管理员则可以通过用户管理和招聘信息管理模块,维护系统的正常运行,确保信息的准确性和时效性。系统还利用数据挖掘技术对招聘信息进行深度分析,为招聘者提供有关求职者偏好、职位竞争情况等重要洞察,从而优化招聘策略。总体而言,该系统通过数据挖掘技术的应用,为招聘市场带来了更加智能化和个性化的服务体验。

实现功能截图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

技术栈

基于Python大数据技术进行网络爬虫的设计,框架使用Scrapy.
系统设计支持以下技术栈
前端开发框架:vue.js
数据库 mysql 版本不限
后端语言框架支持:
1 java(SSM/springboot)-idea/eclipse
2.python(flask/django)–pycharm/vscode
3.Nodejs+Vue.js -vscode
4.php(thinkphp/laravel)-hbuilderx/vscode
数据库工具:Navicat/SQLyog等都可以

Scrapy爬虫框架

Scrapy是一个Python编写的强大,灵活的网络爬虫框架和数据提取工具。它使用异步I/O网络库Twisted进行高效的爬取,并将提取到的数据存储到多种格式中。然而,在需要大规模爬取复杂的网站时,单机爬虫速度会受到限制。为了解决这个问题,Scrapy提供了分布式爬虫系统
#协同过滤算法
协同过滤推荐技术一般采用最近邻技术,利用用户的历史喜好信息计算用户之间的距离,然后 利用目标用户的最近邻居用户对商品评价的加权评价值来预测目标用户对特定商品的喜好程度,系统从而根据这一喜好程度来对目标用户进行推荐。基于协同过滤的推荐系统可以说是从用户的角度来进行相应推荐的,而且是自动的即用户获得的推荐是系统从购买模式或浏览行为等隐式获得的,不需要用户努力地找到适合自己兴趣的推荐信息。

关键技术和使用的工具环境等的说明

MySQL是一种关系型数据库管理系统,是大部分程序员接触的第一款关系型数据库。它相对于其他数据库来说相当轻量级,而且更加灵活。在大量的web工程中,经常作为首选的数据库,因为其开源免费的特点被大量的开发人员所使用。而且在大数据背景下,其海量的集群更为web的高并发提供了良好的后盾。

虽然Spark同样是大数据的框架和计算模型,但其实它与hadoop是相辅相成的,而且可以灵活的部署在hadoop之上,共享hadoop的文件系统。并且在数据处理上更为高效和方便、灵活。在数据量越来越庞大的现在,基于内存的spark可以很快的得到处理的结果,甚至现在已经可以支持近实时的数据处理。使得大数据的价值更加凸显。

Hadoop是由Apache基金会开源的分布式的大数据基础系统。
用户可以在不知道分布式基础设施的细节的情况下开发分布式程序。可以利用无数台节点集群进行高速计算和文件的多副本容错存储。

ECharts是百度开源的一个数据可视化框架,是web端的js框架,可以很方便的进行搭建数据可视化前端界面。官网的文档尤其简洁,极易上手开发,使得海量数据处理完成后,可以方便高效快速的进行可视化处理,直接作用于决策。使得数据的价值得到了直观的展示和提升。目前支持多种图形的绘制。

解决的思路

该系统架构主要依托scrapy框架进行架构,后台采用python动态网页语言编写,使用scrapy框架技术从网站上爬取数据,采用java/python/php/nodejs部署系统环境,使用pyhcarm作为系统的开发平台,在数据库设计和管理上使用MySQL。在人机交互的过程中,客户端不直接与数据库交互,而是通过组件与中间层建立连接,再由中间层与数据库交互。通过设计良好的框架可以减轻重新建立解决复杂问题方案的负担和精力,并且它可以被扩展以进行内部的定制化,有强大的用户社区来支持它,所以框架通常能很好的解决一个问题。

开发流程

在对大数据的深入研究后,根据其前景,包括数据方面的发展与价值,本套系统从用户痛点需求进行分析入手,对系统架构进行了设计,随后完成了系统方面的具体设计,最后为数据入库对DB进行配置和设计,最后到系统搭建和编码实现,分别为后台数据处理,在数据转换方面包括数据的clean、临时存储落地,数据经过完全处理后入库,和前台的ECharts可视化系统,对处理后落地的数据使用饼图进行可视化展现。对系统进行功能叙述、进行详细的系统分析、进行整体的结构性框架设计和对系统详细的设计、最终完成系统的搭建部分和对系统进行的单元测试这几个方面描述了整个系统的流程。

爬虫核心代码展示

import scrapy
import pymysql
import pymssql
from ..items import xiangmuItem
import time
import re
import random
import platform
import json
import os
from urllib.parse import urlparse
import requests
import emoji
class xiangmuSpider(scrapy.Spider):
    name = 'xiangmuSpider'
    spiderUrl = 'https://url网址'
    start_urls = spiderUrl.split(";")
    protocol = ''
    hostname = ''

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)


    # 列表解析
    def parse(self, response):
        
        _url = urlparse(self.spiderUrl)
        self.protocol = _url.scheme
        self.hostname = _url.netloc
        plat = platform.system().lower()
        if plat == 'windows_bak':
            pass
        elif plat == 'linux' or plat == 'windows':
            connect = self.db_connect()
            cursor = connect.cursor()
            if self.table_exists(cursor, 'xiangmu') == 1:
                cursor.close()
                connect.close()
                self.temp_data()
                return

        list = response.css('ul.subject-list li.subject-item')
        
        for item in list:

            fields = xiangmuItem()



            fields["laiyuan"] = self.remove_html(item.css('div.pic a.nbg::attr(href)').extract_first())
            if fields["laiyuan"].startswith('//'):
                fields["laiyuan"] = self.protocol + ':' + fields["laiyuan"]
            elif fields["laiyuan"].startswith('/'):
                fields["laiyuan"] = self.protocol + '://' + self.hostname + fields["laiyuan"]
            fields["fengmian"] = self.remove_html(item.css('div.pic a.nbg img::attr(src)').extract_first())
            fields["xiaoshuoming"] = self.remove_html(item.css('div.info h2 a::attr(title)').extract_first())

            detailUrlRule = item.css('div.pic a.nbg::attr(href)').extract_first()
            if self.protocol in detailUrlRule:
                pass
            elif detailUrlRule.startswith('//'):
                detailUrlRule = self.protocol + ':' + detailUrlRule
            else:
                detailUrlRule = self.protocol + '://' + self.hostname + detailUrlRule
                fields["laiyuan"] = detailUrlRule

            yield scrapy.Request(url=detailUrlRule, meta={'fields': fields},  callback=self.detail_parse)


    # 详情解析
    def detail_parse(self, response):
        fields = response.meta['fields']

        try:
            if '(.*?)' in '''div#info span a::text''':
                fields["zuozhe"] = re.findall(r'''div#info span a::text''', response.text, re.S)[0].strip()
            else:
                if 'zuozhe' != 'xiangqing' and 'zuozhe' != 'detail' and 'zuozhe' != 'pinglun' and 'zuozhe' != 'zuofa':
                    fields["zuozhe"] = self.remove_html(response.css('''div#info span a::text''').extract_first())
                else:
                    fields["zuozhe"] = emoji.demojize(response.css('''div#info span a::text''').extract_first())
        except:
            pass
 # 去除多余html标签
    def remove_html(self, html):
        if html == None:
            return ''
        pattern = re.compile(r'<[^>]+>', re.S)
        return pattern.sub('', html).strip()

    # 数据库连接
    def db_connect(self):
        type = self.settings.get('TYPE', 'mysql')
        host = self.settings.get('HOST', 'localhost')
        port = int(self.settings.get('PORT', 3306))
        user = self.settings.get('USER', 'root')
        password = self.settings.get('PASSWORD', '123456')

        try:
            database = self.databaseName
        except:
            database = self.settings.get('DATABASE', '')

        if type == 'mysql':
            connect = pymysql.connect(host=host, port=port, db=database, user=user, passwd=password, charset='utf8')
        else:
            connect = pymssql.connect(host=host, user=user, password=password, database=database)

        return connect

    # 断表是否存在
    def table_exists(self, cursor, table_name):
        cursor.execute("show tables;")
        tables = [cursor.fetchall()]
        table_list = re.findall('(\'.*?\')',str(tables))
        table_list = [re.sub("'",'',each) for each in table_list]

        if table_name in table_list:
            return 1
        else:
            return 0



系统设计

系统设计与网络爬虫开发,包括:设计系统架构,包括数据采集、处理、存储和可视化模块。编写网络爬虫代码,实现对目标网站的数据爬取
数据处理、分析,数据可视化与系统测试
对爬取的数据进行清洗和预处理,使用统计进行数据分析,开发数据可视化界面,使分析结果直观呈现。以及进行系统测试,确保所有模块稳定运行。
技术选择方面尽量选择比较成熟可靠的技术,保证系统的可靠性、安全性、可用性。通过论证,在现有技术的情况下基本上可以实现上述需求。
尽量选用正版软件和操作系统,保护知识产权,满足企业发展的要求。

论文书写大纲

绪论
1.系统分析
1.1需求分析
1.2所采用的技术关键
2系统总体设计
2.1总体功能
2.2处理流程设计
3系统详细设计
3.1概念结构设计
3.2数据库设计
3.3数据模块设计
4系统调试与测试
4.1测试环境简介
4.2测试目标
4.3测试方法
4,4程序测试
5结论
参考文献
致谢

详细视频演示

请联系我获取更详细的演示视频

源码获取

标签:python,fields,self,系统,爬虫,--,数据挖掘,import,数据
From: https://blog.csdn.net/zhgl322/article/details/142550509

相关文章

  • 淘客返利APP开发中的性能优化实践
    淘客返利APP开发中的性能优化实践大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!今天我们来探讨在淘客返利APP开发过程中,如何进行性能优化。对于一个返利APP来说,用户体验的流畅度和响应速度至关重要。如果APP响应慢、页面卡顿,用户的留存率和满......
  • MyBatis-Plus的使用基础入门案例
    目录文章目录目录简介特性框架结构第一个案例准备工作初始化工程添加依赖完整的pom配置编写实体类编写Mapper修改启动类--扫描Mapper测试运行简介MyBatis-Plus(简称MP)是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生......
  • 网络工程师灵魂拷问:三层交换机那么厉害,路由器还有用途吗?
    你好,这里是网络技术联盟站,我是瑞哥。公众号后台有个粉丝朋友向我提了一个问题:三层交换机那么厉害,路由器还有用途吗?开始我都不知道怎么回答他,或者说服他两者其实区别很大的。仔细一想,在现在的网络项目实施中,三层交换机确实很强大的,有些项目甚至只需要防火墙配合几台三层交......
  • 基于Spring Boot的甘肃非遗文化网站架构设计
    2相关技术2.1SSM框架介绍本课题程序开发使用到的框架技术,英文名称缩写是SSM,在JavaWeb开发中使用的流行框架有SSH、SSM、SpringMVC等,作为一个课题程序采用SSH框架也可以,SSM框架也可以,SpringMVC也可以。SSH框架是属于重量级别的框架,配置繁琐,不够灵活,修改程序需要修改好多......
  • 微服务监控实战(三):指标数据的采集及应用
    如果你觉得这篇文章对你有帮助,请不要吝惜你的“关注”、“点赞”、“评价”、“收藏”,你的支持永远是我前进的动力~~~上一篇我们介绍了云原生架构下日志数据的采集和应用,本文介绍指标数据的采集及应用指标(Metrics)云原生下的指标监控系统云原生下的Prometheus和Grafana基......
  • 甘肃非遗文化网站开发:Spring Boot技术详解
    3系统分析当用户确定开发一款程序时,是需要遵循下面的顺序进行工作,概括为:系统分析–>系统设计–>系统开发–>系统测试,无论这个过程是否有变更或者迭代,都是按照这样的顺序开展工作的。系统分析就是分析系统需要做什么的问题,主要目的就是确定系统的功能,这也为接下来的工作做......
  • (免费源码)计算机毕业设计必看必学 原创定制程序 java、PHP、python、小程序、文案全套
    PHP校园点餐小程序摘 要随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,校园点餐小程序被用户普遍使用,为方便用户能够可以随时进行校园点餐小程序的数据信息管理,特开发了基......
  • redis常用命令
    目录Redsi最核心的命令(set和get)1.set2.get全局命令(通用命令)1.keys(按照匹配规则查看key)2.exists(用来判断指定key是否存在)3.del(删除指定的key)4.expire(给key设置过期时间)5.ttl(查看key的过期时间)reidis的key的过期策略怎么实现的?定时器的比较高效的实现方式6.type(查询key......
  • 交换机镜像之端口镜像,有哪些分类?
    端口镜像是指在网络交换机中,复制流经特定端口的数据包,并将这些数据包发送到另一个指定的端口以便进行监控和分析。这一过程不影响原始流量,允许管理员在不中断网络服务的情况下进行流量分析。端口镜像通常用于网络故障排除、流量分析以及安全监控等场景。前置概念镜像源......
  • (免费源码)计算机毕业设计必看必学 原创定制程序 java、PHP、python、小程序、文案全套
     springboot高校实验室管理系统摘要随着社会的发展,社会的方方面面都在利用信息化时代的优势。互联网的优势和普及使得各种系统的开发成为必需。本文以实际运用为开发背景,运用软件工程原理和开发方法,它主要是采springboot技术和mysql数据库来完成对系统的设计。整个开发过......