1.引言
随着人工智能技术的快速发展,深度学习已经成为解决复杂问题的热门方法之一。深度置信网络(DBN)作为深度学习中应用比较广泛的一种算法,被广泛应用于分类和回归预测等问题中。然而,DBN的训练过程通常需要大量的时间和计算资源,因此如何提高DBN的训练效率成为一个重要的研究方向。
近年来,灰狼算法(Grey Wolf Optimizer,GWO)作为一种新兴的优化算法,受到了广泛的关注。GWO模拟了灰狼群体的捕食行为,通过模拟狼群的协作和竞争来优化问题的解。
为此,本文将灰狼算法 (GWO)与深度置信网络 (DBN) 相结合,采用GWO-DBN 结合智能算法与深度学习模型进行多输入多输出分类识别(故障诊断),具有以下特点:
准确性高:GWO 算法可以有效地优化 DBN 模型的参数,提高故障诊断的准确性。
鲁棒性强:DBN 模型可以捕获数据中的非线性模式,并对扰动和异常值具有较强的鲁棒性。
实现效果好:GWO-DBN 算法的识别效果相对较好,易于理解,已成功应用于电力、医疗等多个领域,应用效果较好。
为此,本文将灰狼算法 (GWO)与深度置信网络 (DBN) 相结合,采用GWO-DBN 结合智能算法与深度学习模型进行多输入多输出分类识别(故障诊断)。
2.原理详解
GWO-DBN 算法的原理如下:
1.数据预处理: 对数据进行标准化、缺失值处理等操作。
2.深度置信网络 (DBN) 构建: 构建 DBN 模型,包括多个受限玻尔兹曼机 (RBM) 层。
3.灰狼算法优化: 使用灰狼算法优化 DBN 模型的超参数(各隐藏层神经元个数,迭代次数和学习率),提高模型识别性能。
3.部分实现代码
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入
T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出
P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入
T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end
%% 优化算法
[Best_score,Best_pos, curve] = GWO(pop, Max_iteration, lb, ub, dim, fun);
%% 模型预训练
Best_pos(1: 3)=round(Best_pos(1: 3));
dbn.sizes = Best_pos(1: 3); % 隐藏层节点
opts.numepochs = 300; % 训练次数
opts.batchsize = M; % 每次训练样本个数
opts.momentum = 0; % 学习率的动量
opts.alpha = 0.01; % 学习率
dbn = dbnsetup(dbn, p_train, opts); % 建立模型
dbn = dbntrain(dbn, p_train, opts); % 训练模型
4. 实现结果展示
标签:DBN,res,GWO,mid,灰狼,故障诊断,算法 From: https://blog.csdn.net/hustef2024/article/details/142441339