首页 > 编程语言 >代码随想录算法 - 二叉树4

代码随想录算法 - 二叉树4

时间:2024-09-14 18:46:11浏览次数:1  
标签:right val root1 随想录 算法 二叉树 root 节点 left

题目1 654. 最大二叉树

给定一个不重复的整数数组 nums最大二叉树 可以用下面的算法从 nums 递归地构建:

  1. 创建一个根节点,其值为 nums 中的最大值。
  2. 递归地在最大值 左边子数组前缀上 构建左子树。
  3. 递归地在最大值 右边子数组后缀上 构建右子树。

返回 nums 构建的 *最大二叉树*

示例 1:

img

输入:nums = [3,2,1,6,0,5]
输出:[6,3,5,null,2,0,null,null,1]
解释:递归调用如下所示:
- [3,2,1,6,0,5] 中的最大值是 6 ,左边部分是 [3,2,1] ,右边部分是 [0,5] 。
    - [3,2,1] 中的最大值是 3 ,左边部分是 [] ,右边部分是 [2,1] 。
        - 空数组,无子节点。
        - [2,1] 中的最大值是 2 ,左边部分是 [] ,右边部分是 [1] 。
            - 空数组,无子节点。
            - 只有一个元素,所以子节点是一个值为 1 的节点。
    - [0,5] 中的最大值是 5 ,左边部分是 [0] ,右边部分是 [] 。
        - 只有一个元素,所以子节点是一个值为 0 的节点。
        - 空数组,无子节点。

示例 2:

img

输入:nums = [3,2,1]
输出:[3,null,2,null,1]

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000
  • nums 中的所有整数 互不相同

思路

递归法

这道题的出题人还挺好的,把解法都写在题目里了,按照给出的方法递归创建递归树就行了

代码

class Solution {
public:
    TreeNode* consturctTree(vector<int>& nums, int left, int right)
    {
        int index = left;
        for(int i = left; i <= right; i++)
        {
            if(nums[i] > nums[index])
                index = i;
        }
        TreeNode* curNode = new TreeNode(nums[index]);
        if(left <= index - 1)
            curNode->left = consturctTree(nums, left, index - 1);
        if(index + 1 <= right)
            curNode->right = consturctTree(nums, index + 1, right);
        return curNode;
    }
    TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
        return consturctTree(nums, 0, nums.size() - 1);
    }
};

题目2 617. 合并二叉树

给你两棵二叉树: root1root2

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

示例 1:

img

输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]

示例 2:

输入:root1 = [1], root2 = [1,2]
输出:[2,2]

提示:

  • 两棵树中的节点数目在范围 [0, 2000]
  • -104 <= Node.val <= 104

思路

递归法

进入递归函数时注意root1子树和root2子树的4种状态就能做了,1.两个子树全为空,则返回nullptr,2.root1子树为空,3.root2子树为空,4.两个子树都不为空,则进行当前节点的合并与处理双child节点。

代码

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
        if(root1 == nullptr)
            return root2;
        if(root2 == nullptr)
            return root1;
        if(root1 == nullptr && root2 == nullptr)
            return nullptr;
        root1->val += root2->val;
        root1->left = mergeTrees(root1->left, root2->left);
        root1->right = mergeTrees(root1->right, root2->right);
        return root1;
    }
};

题目3 700. 二叉搜索树中的搜索

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null

示例 1:

img

输入:root = [4,2,7,1,3], val = 2
输出:[2,1,3]

示例 2:

img

输入:root = [4,2,7,1,3], val = 5
输出:[]

提示:

  • 树中节点数在 [1, 5000] 范围内
  • 1 <= Node.val <= 107
  • root 是二叉搜索树
  • 1 <= val <= 107

思路

基础题,考察二叉搜索树的查询操作,有递归法和迭代法。

递归法

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if(root == nullptr)
            return nullptr;
        if(root->val == val)
            return root;
        return root->val > val ? searchBST(root->left, val) : searchBST(root->right, val);
    }
};

迭代法

class Solution {
public:
    TreeNode* searchBST(TreeNode* root, int val) {
        if(!root->left && !root->right)
            return root->val == val ? root : nullptr;
        TreeNode* curNode = root;
        while(curNode)
        {
            if(curNode->val == val)
                return curNode;
            curNode = curNode->val > val ? curNode->left : curNode->right;
        }
        return curNode;
    }
};

题目4 98. 验证二叉搜索树

给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。

有效 二叉搜索树定义如下:

  • 节点的左

    子树

    只包含

    小于

    当前节点的数。

  • 节点的右子树只包含 大于 当前节点的数。

  • 所有左子树和右子树自身必须也是二叉搜索树。

示例 1:

img

输入:root = [2,1,3]
输出:true

示例 2:

img

输入:root = [5,1,4,null,null,3,6]
输出:false
解释:根节点的值是 5 ,但是右子节点的值是 4 。

提示:

  • 树中节点数目范围在[1, 104]
  • -231 <= Node.val <= 231 - 1

思路

递归法

这道题主要是注意比当前节点大和比当前节点小的节点的位置是否正确,这个是陷阱,解决了这个就AC了。

代码

class Solution {
public:
    bool isValidBST(TreeNode* root) {
        if(!root->left && !root->right)
            return true;
        bool lft = true, rht = true;
        TreeNode * tmpNode = nullptr;
        if(root->left)
        {
            lft = root->left->val < root->val && isValidBST(root->left);
            tmpNode = root->left;
            while(tmpNode->right)
            {
                tmpNode = tmpNode->right;
            }
            lft = lft && tmpNode->val < root->val;
        }
        if(root->right)
        {
            rht = root->right->val > root->val && isValidBST(root->right);
            tmpNode = root->right;
            while(tmpNode->left)
            {
                tmpNode = tmpNode->left;
            }
            rht = rht && tmpNode->val > root->val;
        }
        return lft && rht;
    }
};

标签:right,val,root1,随想录,算法,二叉树,root,节点,left
From: https://www.cnblogs.com/code4log/p/18414543

相关文章

  • dfs 验证搜索二叉树——leetcode98
    代码来自leetcode官方一开始我自己写这个代码时只注意当前节点是否会存在空指针,并没有注意到他的孩子节点也有可能为空,绕了我好久。。。。。。/***Definitionforabinarytreenode.*structTreeNode{*intval;*TreeNode*left;*TreeNode*right;......
  • 顶刊算法 | 鹈鹕算法POA-Transformer-LSTM多变量回归预测
    顶刊算法|鹈鹕算法POA-Transformer-LSTM多变量回归预测目录顶刊算法|鹈鹕算法POA-Transformer-LSTM多变量回归预测效果一览基本介绍程序设计参考资料效果一览基本介绍1.Matlab实现顶刊算法|鹈鹕算法POA-Transformer-LSTM多变量回归预测(程序可以作为JCR一区级论文代码支撑,目......
  • 路径规划 | 基于A*算法的往返式全覆盖路径规划的改进算法(Matlab)
    目录效果一览基本介绍程序设计参考文献效果一览基本介绍基于A*算法的往返式全覆盖路径规划的改进算法matlab实现代码往返式全覆盖路径规划,通过建立二维栅格地图,设置障碍物,以及起始点根据定义往返式路径规划的定义的优先级运动规则从起始点开始进行全图遍历,利用A星算法逃离死角......
  • 多输入多输出 | Matlab实现SO-BP蛇群算法优化BP神经网络多输入多输出预测
    多输入多输出|Matlab实现SO-BP蛇群算法优化BP神经网络多输入多输出预测目录多输入多输出|Matlab实现SO-BP蛇群算法优化BP神经网络多输入多输出预测预测效果基本介绍程序设计往期精彩参考资料预测效果基本介绍多输入多输出|Matlab实现SO-BP蛇群算法优化BP神经网络多输入多输......
  • 时序预测 | MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测
    时序预测|MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测目录时序预测|MATLAB实现BKA-XGBoost(黑翅鸢优化算法优化极限梯度提升树)时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍Matlab实现BKA-XGBoost时间序列预测,黑翅鸢优......
  • 最小生成树之 Prim 算法学习笔记
    最小生成树之Prim算法学习笔记emm...在一通瞎搞奋战之后,prim被我收入囊中!\(prim\)的思路其实非常简单,和\(dij\)有一丝相似之处,可能会搞混设最小生成树上的集合为\(S\),所有点一开始到\(S\)的距离都是\(+\infty\)从任意一个点开始,将其放入\(S\),然后更新与这个点相邻......
  • 信息学奥赛初赛天天练-89-CSP-S2023基础题1-linux常用命令、完全平方数、稀疏图、队列
    PDF文档公众号回复关键字:202409142023CSP-S选择题单项选择题(共15题,每题2分,共计30分:每题有且仅有一个正确选项)1在Linux系统终端中,以下哪个命令用于创建一个新的目录?()AnewdirBmkdirCcreateDmkfold2从0,1,2,3,4中选取4个数字,能组成(......
  • 深度学习YOLO人员抽烟AI检测算法在智慧安防领域的创新应用
    随着人工智能技术的飞速发展,计算机视觉和深度学习算法在各个领域的应用日益广泛。其中,人员抽烟AI检测算法以其高效、精准的特点,成为公共场所、工厂、学校等场景中的得力助手。本文将介绍TSINGSEE青犀AI智能分析网关V4人员抽烟检测算法的基本原理、实现步骤以及其在多个实际场景......
  • 火焰检测算法、明烟明火检测、烟火检测算法
    烟火检测算法主要用于火灾早期预警系统中,能够在火灾初期阶段及时发现烟雾或火焰,从而快速响应并采取行动,以减少火灾带来的损失。以下是对烟火检测算法的应用场景及优势的详细介绍。烟火检测算法广泛应用于多种场景中,以下是一些典型的应用实例:1.公共安全监控-楼宇监控:在办公楼、......
  • 精准识别,高效管理:工服识别AI检测算法在多场景中的应用优势
    随着人工智能技术的快速发展,其在各个行业的应用也日益广泛。特别是在工业生产和安全监管领域,工服识别AI检测算法凭借其高效、精准的特点,成为提升生产效率、保障工作人员安全的重要手段。本文将详细介绍TSINGSEE青犀AI智能分析网关V4工服识别算法的基本原理、技术实现以及其在多个......