首页 > 编程语言 >Python数据分析与可视化基础教程

Python数据分析与可视化基础教程

时间:2024-09-14 13:53:14浏览次数:12  
标签:数据分析 plt Python 数据 column 可视化 基础教程 data

Python数据分析与可视化基础教程

一、引言

Python是一种功能强大的编程语言,广泛应用于数据科学、机器学习、Web开发等领域。在数据分析与可视化方面,Python提供了丰富的库和工具,可以帮助我们轻松地处理数据、提取有用信息,并将结果以直观的方式展示出来。

本教程将介绍Python数据分析与可视化的基础知识,包括数据导入、数据处理、基本数据分析和可视化等方面。

二、环境准备

在开始之前,请确保已经安装了Python环境,并安装了以下常用库:

  • pandas:用于数据处理和分析
  • matplotlib:用于数据可视化
  • seaborn:基于matplotlib的更高级的可视化库(可选)

你可以使用pip命令来安装这些库:

pip install pandas matplotlib seaborn

三、数据导入

首先,我们需要导入数据。通常,数据存储在CSV、Excel或数据库等文件中。这里以CSV文件为例,展示如何使用pandas库导入数据。

import pandas as pd

# 从CSV文件导入数据
data = pd.read_csv('data.csv')

# 查看数据的前5行
print(data.head())

四、数据处理

在导入数据后,我们可能需要对数据进行清洗、转换或筛选等操作。pandas库提供了丰富的函数和方法来完成这些任务。

4.1 数据清洗

# 删除包含缺失值的行
data = data.dropna()

# 或者使用填充缺失值的方法
data = data.fillna(0)

4.2 数据转换

# 将某一列的数据类型转换为整数
data['column_name'] = data['column_name'].astype(int)

# 对某一列应用自定义函数
def custom_function(x):
    return x * 2

data['new_column'] = data['column_name'].apply(custom_function)

4.3 数据筛选

# 根据条件筛选数据
filtered_data = data[data['column_name'] > 10]

五、基本数据分析

在数据处理完成后,我们可以进行基本的数据分析,如计算统计量、分组聚合等。

5.1 计算统计量

# 计算某一列的平均值、中位数、标准差等统计量
mean = data['column_name'].mean()
median = data['column_name'].median()
std = data['column_name'].std()

5.2 分组聚合

# 按照某一列的值进行分组,并计算每组的统计量
grouped_data = data.groupby('group_column')['column_name'].agg(['mean', 'sum'])

六、数据可视化

数据可视化是数据分析的重要一环,它可以帮助我们更直观地理解数据。matplotlib和seaborn是Python中常用的可视化库。

6.1 使用matplotlib绘制折线图

import matplotlib.pyplot as plt

# 绘制折线图
plt.plot(data['x'], data['y'])
plt.xlabel('X轴标签')
plt.ylabel('Y轴标签')
plt.title('折线图示例')
plt.show()

6.2 使用seaborn绘制条形图

import seaborn as sns

# 绘制条形图
sns.barplot(x='group_column', y='column_name', data=data)
plt.xlabel('分组列')
plt.ylabel('数值列')
plt.title('条形图示例')
plt.show()

这只是数据可视化的两个简单示例,matplotlib和seaborn还支持绘制散点图、饼图、直方图等多种类型的图表。你可以根据具体需求选择合适的图表类型来展示数据。

七、结论

本教程介绍了Python数据分析与可视化的基础知识,包括数据导入、数据处理、基本数据分析和可视化等方面。通过学习和实践这些内容,你将能够掌握Python在数据分析领域的基本技能,为后续深入学习和应用打下基础。希望本教程对你有所帮助!如有任何问题,请随时提问。

标签:数据分析,plt,Python,数据,column,可视化,基础教程,data
From: https://blog.csdn.net/whc15398305821/article/details/142232800

相关文章

  • *Python*机器学习算法——线性回归(Linear Regression)
    目录⭐️引言⭐️理论1、 简单线性回归2、 多元线性回归3、最佳拟合⭐️结语⭐️引言        线性回归(LinearRegression)是一种基本的预测分析方法,它通过拟合数据点来建立因变量(目标变量)与一个或多个自变量之间的关系模型。线性回归假设这种关系是线性的,并试图找到......
  • 如何使用【Python】快速制作可视化报表
    数据可视化能力已经越来越成为各岗位的基础技能。领英的数据报告显示,数据可视化技能在2017年中国最热门技能中排名第一。就数据分析而言,可视化探索几乎是你正式进行数据分析的第一步,通过SQL拿到数据之后,我们需要使用可视化方法探索和发现数据中的模式规律。数据分析界有一......
  • YOLOV5 onnx推理 python
      pipinstallonnxcoremltoolsonnx-simplifier 3.使用onnx-simplier简化模型python-monnxsimbest.onnxbest-sim.onnx #coding=utf-8importcv2importnumpyasnpimportonnxruntimeimporttorchimporttorchvisionimporttimeimportrandomfromutil......
  • 爬虫代码 python
       importrequestsimporturllibimportosimporttimeprint('欢迎使用Aking爬虫图片下载器!')time.sleep(0.5)print('欢迎使用Aking爬虫图片下载器!!')time.sleep(0.5)print('欢迎使用Aking爬虫图片下载器!!!')time.sleep(0.5)print('准备就绪!')time.sle......
  • Axure高效打造大屏可视化BI数据展示
    在使用AxureRP软件设计大屏可视化BI数据显示模板时,我们可以遵循一系列高效的方法和步骤来确保设计的质量和效率。以下是一个详细的教程,指导如何高效地使用AxureRP进行大屏界面设计。一、确定设计标准与分辨率通常,大屏可视化设计以标准的1K屏幕分辨率(1920*1080px)为基准进行......
  • python爬虫连载20
    XPath语法:表达式描述nodename选取此节点的所有子节点/从根节点选取//选择任意位置的某个节点.选取当前节点..选取当前节点的父节点@选取属性    <?xmlversion="1.0"encoding="IS0-8859-1"?><classroom>      <student>             <id>1001</id>   ......
  • Python如何定义一个函数?
    在Python中,函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码块,它可以提高应用的模块性,和代码的重复利用率。那么Python如何定义一个函数?以下是具体内容介绍。在Python中定义函数有多种方法。最常见的方法是使用def关键字,后跟函数名称和一对圆括号。语法:......
  • Python语言如何编写函数?
    Python函数是指组织好的、可重复使用的、用来实现单一或相关联功能的代码段。Python函数包含系统中自带的一些函数、第三方函数、以及用户自定义的函数,那么Python如何编写函数?我们通过这篇文章来介绍一下。函数是一组可重复使用的代码块,用于执行特定的任务。它们可以接受......
  • pandas-ai 基于LLM进行数据分析的python 框架
    pandas-ai基于LLM进行数据分析的python框架包含的特性基于自然语言的数据查询数据可视化数据清理特征生成数据链接(支持链接多种不同的数据源)说明对于基于数据分析的场景pandas-ai是一个值得尝试的工具,同时官方也微调了一个BambooLLM的模型(基于mistral)目前也已经在huggingface......
  • 【python爬虫案例】利用python爬取豆瓣电影TOP250评分排行数据!
    目录一、爬取对象-豆瓣电影TOP250二、豆瓣电影网站分析三、python爬虫代码详解三、完整源码获取一、爬取对象-豆瓣电影TOP250今天给大家分享一期豆瓣读书TOP排行榜250的python爬虫案例爬取的目标网址是:豆瓣电影Top250咱们以目标为驱动,以兴趣为导向,先来看下爬虫程......