.\flux\demo_gr.py
# 导入操作系统相关模块
import os
# 导入时间相关模块
import time
# 从 io 模块导入 BytesIO 类
from io import BytesIO
# 导入 UUID 生成模块
import uuid
# 导入 PyTorch 库
import torch
# 导入 Gradio 库
import gradio as gr
# 导入 NumPy 库
import numpy as np
# 从 einops 模块导入 rearrange 函数
from einops import rearrange
# 从 PIL 库导入 Image 和 ExifTags
from PIL import Image, ExifTags
# 从 transformers 库导入 pipeline 函数
from transformers import pipeline
# 从 flux.cli 模块导入 SamplingOptions 类
from flux.cli import SamplingOptions
# 从 flux.sampling 模块导入多个函数
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
# 从 flux.util 模块导入多个函数
from flux.util import configs, embed_watermark, load_ae, load_clip, load_flow_model, load_t5
# 设置 NSFW (不适宜工作) 图像的分类阈值
NSFW_THRESHOLD = 0.85
# 定义获取模型的函数
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
# 加载 T5 模型,长度限制根据是否为 schnell 模型决定
t5 = load_t5(device, max_length=256 if is_schnell else 512)
# 加载 CLIP 模型
clip = load_clip(device)
# 加载流动模型,根据是否卸载来决定使用 CPU 还是设备
model = load_flow_model(name, device="cpu" if offload else device)
# 加载自编码器模型,同样根据是否卸载来决定使用 CPU 还是设备
ae = load_ae(name, device="cpu" if offload else device)
# 创建 NSFW 分类器管道
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
# 返回加载的模型和分类器
return model, ae, t5, clip, nsfw_classifier
# 定义 FluxGenerator 类
class FluxGenerator:
# 类的初始化函数
def __init__(self, model_name: str, device: str, offload: bool):
# 将设备字符串转换为 torch.device 对象
self.device = torch.device(device)
# 是否卸载的标志
self.offload = offload
# 模型名称
self.model_name = model_name
# 判断是否为 schnell 模型
self.is_schnell = model_name == "flux-schnell"
# 获取模型及相关组件
self.model, self.ae, self.t5, self.clip, self.nsfw_classifier = get_models(
model_name,
device=self.device,
offload=self.offload,
is_schnell=self.is_schnell,
)
# 使用 torch 的推理模式生成图像
@torch.inference_mode()
def generate_image(
self,
width,
height,
num_steps,
guidance,
seed,
prompt,
init_image=None,
image2image_strength=0.0,
add_sampling_metadata=True,
# 定义创建演示的函数
def create_demo(model_name: str, device: str = "cuda" if torch.cuda.is_available() else "cpu", offload: bool = False):
# 初始化 FluxGenerator 对象
generator = FluxGenerator(model_name, device, offload)
# 判断是否为 schnell 模型
is_schnell = model_name == "flux-schnell"
# 创建一个 Gradio 应用的 UI 布局
with gr.Blocks() as demo:
# 添加标题 Markdown 文本,显示模型名称
gr.Markdown(f"# Flux Image Generation Demo - Model: {model_name}")
# 创建一行布局
with gr.Row():
# 创建一列布局
with gr.Column():
# 创建一个文本框用于输入提示
prompt = gr.Textbox(label="Prompt", value="a photo of a forest with mist swirling around the tree trunks. The word \"FLUX\" is painted over it in big, red brush strokes with visible texture")
# 创建一个复选框用于选择是否启用图像到图像转换
do_img2img = gr.Checkbox(label="Image to Image", value=False, interactive=not is_schnell)
# 创建一个隐藏的图像输入框
init_image = gr.Image(label="Input Image", visible=False)
# 创建一个隐藏的滑块,用于调整图像到图像转换的强度
image2image_strength = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Noising strength", visible=False)
# 创建一个可折叠的高级选项区域
with gr.Accordion("Advanced Options", open=False):
# 创建滑块用于设置图像宽度
width = gr.Slider(128, 8192, 1360, step=16, label="Width")
# 创建滑块用于设置图像高度
height = gr.Slider(128, 8192, 768, step=16, label="Height")
# 创建滑块用于设置步骤数,根据是否快速模式设置初始值
num_steps = gr.Slider(1, 50, 4 if is_schnell else 50, step=1, label="Number of steps")
# 创建滑块用于设置指导强度
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance", interactive=not is_schnell)
# 创建一个文本框用于输入种子值
seed = gr.Textbox(-1, label="Seed (-1 for random)")
# 创建一个复选框用于选择是否将采样参数添加到元数据
add_sampling_metadata = gr.Checkbox(label="Add sampling parameters to metadata?", value=True)
# 创建一个生成按钮
generate_btn = gr.Button("Generate")
# 创建另一列布局
with gr.Column():
# 创建一个图像框用于显示生成的图像
output_image = gr.Image(label="Generated Image")
# 创建一个数字框用于显示使用的种子
seed_output = gr.Number(label="Used Seed")
# 创建一个文本框用于显示警告信息
warning_text = gr.Textbox(label="Warning", visible=False)
# 创建一个文件框用于下载高分辨率图像
download_btn = gr.File(label="Download full-resolution")
# 定义一个函数,用于更新图像到图像转换的可见性
def update_img2img(do_img2img):
return {
init_image: gr.update(visible=do_img2img),
image2image_strength: gr.update(visible=do_img2img),
}
# 当复选框状态变化时,调用更新函数
do_img2img.change(update_img2img, do_img2img, [init_image, image2image_strength])
# 设置生成按钮的点击事件,调用生成图像的函数并设置输入和输出
generate_btn.click(
fn=generator.generate_image,
inputs=[width, height, num_steps, guidance, seed, prompt, init_image, image2image_strength, add_sampling_metadata],
outputs=[output_image, seed_output, download_btn, warning_text],
)
# 返回创建的 Gradio 应用布局
return demo
# 当脚本作为主程序运行时执行以下代码
if __name__ == "__main__":
# 导入 argparse 模块用于处理命令行参数
import argparse
# 创建 ArgumentParser 对象,用于解析命令行参数
parser = argparse.ArgumentParser(description="Flux")
# 添加 --name 参数,指定模型名称,默认值为 "flux-schnell",并限制选择范围
parser.add_argument("--name", type=str, default="flux-schnell", choices=list(configs.keys()), help="Model name")
# 添加 --device 参数,指定设备,默认值为 "cuda"(如果有 GPU 可用),否则为 "cpu"
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
# 添加 --offload 参数,标志位,指示是否在不使用时将模型移到 CPU
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
# 添加 --share 参数,标志位,指示是否创建一个公共链接以共享演示
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
# 解析命令行参数,并将结果存储在 args 对象中
args = parser.parse_args()
# 使用解析出的参数创建 demo 对象
demo = create_demo(args.name, args.device, args.offload)
# 启动 demo,是否共享由 --share 参数决定
demo.launch(share=args.share)
.\flux\demo_st.py
# 导入操作系统相关功能
import os
# 导入正则表达式处理功能
import re
# 导入时间处理功能
import time
# 从 glob 模块导入 iglob,用于生成匹配特定模式的文件路径
from glob import iglob
# 从 io 模块导入 BytesIO,用于处理字节流
from io import BytesIO
# 导入 streamlit 库,用于创建 Web 应用
import streamlit as st
# 导入 PyTorch 库,用于深度学习模型
import torch
# 从 einops 库导入 rearrange,用于张量的重排
from einops import rearrange
# 从 fire 库导入 Fire,用于将命令行参数绑定到函数
from fire import Fire
# 从 PIL 库导入 ExifTags 和 Image,用于图像处理
from PIL import ExifTags, Image
# 从 st_keyup 库导入 st_keyup,用于捕捉键盘事件
from st_keyup import st_keyup
# 从 torchvision 库导入 transforms,用于图像转换
from torchvision import transforms
# 从 transformers 库导入 pipeline,用于各种预训练模型的管道
from transformers import pipeline
# 设置 NSFW 内容的阈值
NSFW_THRESHOLD = 0.85
# 使用 Streamlit 缓存模型加载函数的结果,以提高性能
@st.cache_resource()
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
# 加载 T5 模型,最大长度取决于是否使用 Schnell 模式
t5 = load_t5(device, max_length=256 if is_schnell else 512)
# 加载 CLIP 模型
clip = load_clip(device)
# 加载流模型,设备可能是 CPU 或 GPU
model = load_flow_model(name, device="cpu" if offload else device)
# 加载自动编码器模型,设备可能是 CPU 或 GPU
ae = load_ae(name, device="cpu" if offload else device)
# 加载 NSFW 分类器,用于图像内容检测
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
# 返回模型、自动编码器、T5、CLIP 和 NSFW 分类器
return model, ae, t5, clip, nsfw_classifier
# 获取用户上传的图像,返回处理后的张量
def get_image() -> torch.Tensor | None:
# 允许用户上传 JPG、JPEG 或 PNG 格式的图像
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"])
# 如果没有上传图像,返回 None
if image is None:
return None
# 打开图像文件并转换为 RGB 模式
image = Image.open(image).convert("RGB")
# 定义图像转换操作,将图像转为张量,并进行归一化
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Lambda(lambda x: 2.0 * x - 1.0),
]
)
# 应用转换,将图像处理为张量,并增加一个维度
img: torch.Tensor = transform(image)
return img[None, ...]
# 主函数,用于运行应用逻辑
@torch.inference_mode()
def main(
device: str = "cuda" if torch.cuda.is_available() else "cpu",
offload: bool = False,
output_dir: str = "output",
):
# 根据用户选择的设备创建 PyTorch 设备对象
torch_device = torch.device(device)
# 获取配置中的模型名称列表
names = list(configs.keys())
# 让用户选择要加载的模型
name = st.selectbox("Which model to load?", names)
# 如果未选择模型或未勾选加载模型的复选框,则返回
if name is None or not st.checkbox("Load model", False):
return
# 判断是否使用 Schnell 模式
is_schnell = name == "flux-schnell"
# 获取所需的模型和分类器
model, ae, t5, clip, nsfw_classifier = get_models(
name,
device=torch_device,
offload=offload,
is_schnell=is_schnell,
)
# 判断是否执行图像到图像的转换
do_img2img = (
st.checkbox(
"Image to Image",
False,
disabled=is_schnell,
help="Partially noise an image and denoise again to get variations.\n\nOnly works for flux-dev",
)
and not is_schnell
)
# 如果需要图像到图像转换
if do_img2img:
# 获取用户上传的图像
init_image = get_image()
# 如果没有上传图像,显示警告信息
if init_image is None:
st.warning("Please add an image to do image to image")
# 让用户输入噪声强度
image2image_strength = st.number_input("Noising strength", min_value=0.0, max_value=1.0, value=0.8)
# 如果上传了图像,显示图像尺寸
if init_image is not None:
h, w = init_image.shape[-2:]
st.write(f"Got image of size {w}x{h} ({h*w/1e6:.2f}MP)")
# 让用户选择是否调整图像大小
resize_img = st.checkbox("Resize image", False) or init_image is None
else:
# 如果不进行图像到图像转换,初始化图像和图像调整标志
init_image = None
resize_img = True
image2image_strength = 0.0
# 允许进行打包和转换到潜在空间
# 根据用户输入的宽度值计算实际宽度,确保宽度为16的倍数
width = int(
16 * (st.number_input("Width", min_value=128, value=1360, step=16, disabled=not resize_img) // 16)
)
# 根据用户输入的高度值计算实际高度,确保高度为16的倍数
height = int(
16 * (st.number_input("Height", min_value=128, value=768, step=16, disabled=not resize_img) // 16)
)
# 根据用户输入的步数值设置步数,默认值为4(如果是"schnell"模式),否则为50
num_steps = int(st.number_input("Number of steps", min_value=1, value=(4 if is_schnell else 50)))
# 根据用户输入的引导值设置引导参数,默认为3.5,"schnell"模式下禁用此输入
guidance = float(st.number_input("Guidance", min_value=1.0, value=3.5, disabled=is_schnell))
# 根据用户输入的种子值设置种子,"schnell"模式下禁用此输入
seed_str = st.text_input("Seed", disabled=is_schnell)
# 如果种子值是有效的十进制数,则将其转换为整数;否则,设置种子为None,并显示提示信息
if seed_str.isdecimal():
seed = int(seed_str)
else:
st.info("No seed set, set to positive integer to enable")
seed = None
# 根据用户选择是否保存样本,设置保存样本的选项
save_samples = st.checkbox("Save samples?", not is_schnell)
# 根据用户选择是否将采样参数添加到元数据中,设置此选项
add_sampling_metadata = st.checkbox("Add sampling parameters to metadata?", True)
# 默认提示文本,用于生成图像
default_prompt = (
"a photo of a forest with mist swirling around the tree trunks. The word "
'"FLUX" is painted over it in big, red brush strokes with visible texture'
)
# 获取用户输入的提示文本,默认值为default_prompt,并设置300毫秒的防抖延迟
prompt = st_keyup("Enter a prompt", value=default_prompt, debounce=300, key="interactive_text")
# 构造输出文件名的路径,并检查输出目录是否存在
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
# 如果输出目录不存在,则创建目录,并初始化索引为0
os.makedirs(output_dir)
idx = 0
else:
# 如果输出目录存在,获取所有匹配的文件名,并计算下一个可用的索引
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# 创建一个 PyTorch 随机数生成器对象
rng = torch.Generator(device="cpu")
# 如果 session_state 中没有“seed”项,则初始化种子
if "seed" not in st.session_state:
st.session_state.seed = rng.seed()
# 定义增加种子值的函数
def increment_counter():
st.session_state.seed += 1
# 定义减少种子值的函数(种子值不能小于0)
def decrement_counter():
if st.session_state.seed > 0:
st.session_state.seed -= 1
# 创建一个采样选项对象,用于后续处理
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
# 如果应用名为“flux-schnell”,则显示带有按钮的列来增加或减少种子值
if name == "flux-schnell":
cols = st.columns([5, 1, 1, 5])
with cols[1]:
st.button("↩", on_click=increment_counter)
with cols[2]:
st.button("↪", on_click=decrement_counter)
# 获取会话状态中的样本(如果存在),并显示图像及其相关信息
samples = st.session_state.get("samples", None)
if samples is not None:
st.image(samples["img"], caption=samples["prompt"])
st.download_button(
"Download full-resolution",
samples["bytes"],
file_name="generated.jpg",
mime="image/jpg",
)
st.write(f"Seed: {samples['seed']}")
# 定义应用程序入口函数
def app():
# 调用 Fire 函数并传入 main 作为参数
Fire(main)
# 如果脚本是主程序(而不是被导入),则执行 app() 函数
if __name__ == "__main__":
app()
FLUX.1 [dev]
is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions.
For more information, please read our blog post.
Key Features
- Cutting-edge output quality, second only to our state-of-the-art model
FLUX.1 [pro]
. - Competitive prompt following, matching the performance of closed source alternatives.
- Trained using guidance distillation, making
FLUX.1 [dev]
more efficient. - Open weights to drive new scientific research, and empower artists to develop innovative workflows.
- Generated outputs can be used for personal, scientific, and commercial purposes, as described in the flux-1-dev-non-commercial-license.
Usage
We provide a reference implementation of FLUX.1 [dev]
, as well as sampling code, in a dedicated github repository.
Developers and creatives looking to build on top of FLUX.1 [dev]
are encouraged to use this as a starting point.
API Endpoints
The FLUX.1 models are also available via API from the following sources
- bfl.ml (currently
FLUX.1 [pro]
) - replicate.com
- fal.ai
ComfyUI
FLUX.1 [dev]
is also available in Comfy UI for local inference with a node-based workflow.
Limitations
- This model is not intended or able to provide factual information.
- As a statistical model this checkpoint might amplify existing societal biases.
- The model may fail to generate output that matches the prompts.
- Prompt following is heavily influenced by the prompting-style.
Out-of-Scope Use
The model and its derivatives may not be used
- In any way that violates any applicable national, federal, state, local or international law or regulation.
- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way; including but not limited to the solicitation, creation, acquisition, or dissemination of child exploitative content.
- To generate or disseminate verifiably false information and/or content with the purpose of harming others.
- To generate or disseminate personal identifiable information that can be used to harm an individual.
- To harass, abuse, threaten, stalk, or bully individuals or groups of individuals.
- To create non-consensual nudity or illegal pornographic content.
- For fully automated decision making that adversely impacts an individual's legal rights or otherwise creates or modifies a binding, enforceable obligation.
- Generating or facilitating large-scale disinformation campaigns.
License
This model falls under the FLUX.1 [dev]
Non-Commercial License.
FLUX.1 [schnell]
is a 12 billion parameter rectified flow transformer capable of generating images from text descriptions.
For more information, please read our blog post.
Key Features
- Cutting-edge output quality and competitive prompt following, matching the performance of closed source alternatives.
- Trained using latent adversarial diffusion distillation,
FLUX.1 [schnell]
can generate high-quality images in only 1 to 4 steps. - Released under the
apache-2.0
licence, the model can be used for personal, scientific, and commercial purposes.
Usage
We provide a reference implementation of FLUX.1 [schnell]
, as well as sampling code, in a dedicated github repository.
Developers and creatives looking to build on top of FLUX.1 [schnell]
are encouraged to use this as a starting point.
API Endpoints
The FLUX.1 models are also available via API from the following sources
- bfl.ml (currently
FLUX.1 [pro]
) - replicate.com
- fal.ai
ComfyUI
FLUX.1 [schnell]
is also available in Comfy UI for local inference with a node-based workflow.
Limitations
- This model is not intended or able to provide factual information.
- As a statistical model this checkpoint might amplify existing societal biases.
- The model may fail to generate output that matches the prompts.
- Prompt following is heavily influenced by the prompting-style.
Out-of-Scope Use
The model and its derivatives may not be used
- In any way that violates any applicable national, federal, state, local or international law or regulation.
- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way; including but not limited to the solicitation, creation, acquisition, or dissemination of child exploitative content.
- To generate or disseminate verifiably false information and/or content with the purpose of harming others.
- To generate or disseminate personal identifiable information that can be used to harm an individual.
- To harass, abuse, threaten, stalk, or bully individuals or groups of individuals.
- To create non-consensual nudity or illegal pornographic content.
- For fully automated decision making that adversely impacts an individual's legal rights or otherwise creates or modifies a binding, enforceable obligation.
- Generating or facilitating large-scale disinformation campaigns.
.\flux\src\flux\api.py
# 导入标准库中的 io 模块,用于处理
):
"""
Manages an image generation request to the API.
Args:
prompt: Prompt to sample
width: Width of the image in pixel
height: Height of the image in pixel
name: Name of the model
num_steps: Number of network evaluations
prompt_upsampling: Use prompt upsampling
seed: Fix the generation seed
validate: Run input validation
launch: Directly launches request
api_key: Your API key if not provided by the environment
Raises:
ValueError: For invalid input
ApiException: For errors raised from the API
"""
# 如果需要验证输入
if validate:
# 检查模型名称是否有效
if name not in ["flux.1-pro"]:
raise ValueError(f"Invalid model {name}")
# 检查宽度是否是 32 的倍数
elif width % 32 != 0:
raise ValueError(f"width must be divisible by 32, got {width}")
# 检查宽度是否在合法范围内
elif not (256 <= width <= 1440):
raise ValueError(f"width must be between 256 and 1440, got {width}")
# 检查高度是否是 32 的倍数
elif height % 32 != 0:
raise ValueError(f"height must be divisible by 32, got {height}")
# 检查高度是否在合法范围内
elif not (256 <= height <= 1440):
raise ValueError(f"height must be between 256 and 1440, got {height}")
# 检查步骤数量是否在合法范围内
elif not (1 <= num_steps <= 50):
raise ValueError(f"steps must be between 1 and 50, got {num_steps}")
# 创建请求 JSON 对象,包含所有必需的参数
self.request_json = {
"prompt": prompt,
"width": width,
"height": height,
"variant": name,
"steps": num_steps,
"prompt_upsampling": prompt_upsampling,
}
# 如果指定了种子,将其添加到请求 JSON 中
if seed is not None:
self.request_json["seed"] = seed
# 初始化实例变量
self.request_id: str | None = None
self.result: dict | None = None
self._image_bytes: bytes | None = None
self._url: str | None = None
# 如果没有提供 API 密钥,则从环境变量中获取
if api_key is None:
self.api_key = os.environ.get("BFL_API_KEY")
else:
# 否则使用提供的 API 密钥
self.api_key = api_key
# 如果需要立即发起请求
if launch:
self.request()
def request(self):
"""
Request to generate the image.
"""
# 如果已经有请求 ID,则不再发起请求
if self.request_id is not None:
return
# 发起 POST 请求以生成图像
response = requests.post(
f"{API_ENDPOINT}/v1/image",
headers={
"accept": "application/json",
"x-key": self.api_key,
"Content-Type": "application/json",
},
json=self.request_json,
)
# 解析响应为 JSON
result = response.json()
# 如果响应状态码不是 200,抛出 API 异常
if response.status_code != 200:
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
# 存储请求 ID
self.request_id = response.json()["id"]
# 定义一个方法来等待生成完成并检索响应结果
def retrieve(self) -> dict:
"""
等待生成完成并检索响应
"""
# 如果 request_id 为空,则调用请求方法生成请求 ID
if self.request_id is None:
self.request()
# 循环等待直到结果可用
while self.result is None:
# 发送 GET 请求以获取结果
response = requests.get(
f"{API_ENDPOINT}/v1/get_result",
headers={
"accept": "application/json",
"x-key": self.api_key,
},
params={
"id": self.request_id,
},
)
# 将响应内容转换为 JSON 格式
result = response.json()
# 检查返回结果中是否包含状态字段
if "status" not in result:
# 如果没有状态字段,抛出 API 异常
raise ApiException(status_code=response.status_code, detail=result.get("detail"))
# 如果状态是“Ready”,则将结果保存到实例变量
elif result["status"] == "Ready":
self.result = result["result"]
# 如果状态是“Pending”,则等待 0.5 秒再重试
elif result["status"] == "Pending":
time.sleep(0.5)
# 如果状态是其他值,抛出 API 异常
else:
raise ApiException(status_code=200, detail=f"API returned status '{result['status']}'")
# 返回最终结果
return self.result
# 定义一个属性方法,返回生成的图像字节
@property
def bytes(self) -> bytes:
"""
生成的图像字节
"""
# 如果图像字节为空,则从 URL 获取图像数据
if self._image_bytes is None:
response = requests.get(self.url)
# 如果响应状态码是 200,则保存图像字节
if response.status_code == 200:
self._image_bytes = response.content
# 否则抛出 API 异常
else:
raise ApiException(status_code=response.status_code)
# 返回图像字节
return self._image_bytes
# 定义一个属性方法,返回图像的公共 URL
@property
def url(self) -> str:
"""
检索图像的公共 URL
"""
# 如果 URL 为空,则调用 retrieve 方法获取结果并保存 URL
if self._url is None:
result = self.retrieve()
self._url = result["sample"]
# 返回图像的 URL
return self._url
# 定义一个属性方法,返回 PIL 图像对象
@property
def image(self) -> Image.Image:
"""
加载图像为 PIL Image 对象
"""
return Image.open(io.BytesIO(self.bytes))
# 定义一个方法来将生成的图像保存到本地路径
def save(self, path: str):
"""
将生成的图像保存到本地路径
"""
# 获取 URL 的文件扩展名
suffix = Path(self.url).suffix
# 如果路径没有扩展名,则将扩展名添加到路径中
if not path.endswith(suffix):
path = path + suffix
# 创建保存路径的父目录(如果不存在)
Path(path).resolve().parent.mkdir(parents=True, exist_ok=True)
# 将图像字节写入指定路径
with open(path, "wb") as file:
file.write(self.bytes)
# 确保只有在直接运行该脚本时才执行以下代码
if __name__ == "__main__":
# 从 fire 库中导入 Fire 类
from fire import Fire
# 使用 Fire 类启动命令行界面,传入 ImageRequest 作为处理对象
Fire(ImageRequest)
.\flux\src\flux\cli.py
# 导入操作系统相关模块
import os
# 导入正则表达式模块
import re
# 导入时间模块
import time
# 从 dataclasses 模块导入 dataclass 装饰器
from dataclasses import dataclass
# 从 glob 模块导入 iglob 函数,用于文件名模式匹配
from glob import iglob
# 导入 PyTorch 库
import torch
# 从 einops 模块导入 rearrange 函数,用于张量重排
from einops import rearrange
# 从 fire 模块导入 Fire 类,用于命令行接口
from fire import Fire
# 从 PIL 模块导入 ExifTags 和 Image,用于处理图片和元数据
from PIL import ExifTags, Image
# 从 flux.sampling 模块导入采样相关函数
from flux.sampling import denoise, get_noise, get_schedule, prepare, unpack
# 从 flux.util 模块导入实用工具函数
from flux.util import (configs, embed_watermark, load_ae, load_clip,
load_flow_model, load_t5)
# 从 transformers 模块导入 pipeline,用于加载预训练模型
from transformers import pipeline
# 设置 NSFW(不适宜工作)内容的阈值
NSFW_THRESHOLD = 0.85
# 定义一个数据类,用于存储采样选项
@dataclass
class SamplingOptions:
# 用户提示文本
prompt: str
# 图像宽度
width: int
# 图像高度
height: int
# 生成图像的步骤数量
num_steps: int
# 引导强度
guidance: float
# 随机种子,可选
seed: int | None
# 解析用户输入的提示,并根据选项更新 SamplingOptions
def parse_prompt(options: SamplingOptions) -> SamplingOptions | None:
# 提示用户输入下一个提示
user_question = "Next prompt (write /h for help, /q to quit and leave empty to repeat):\n"
# 使用说明文本
usage = (
"Usage: Either write your prompt directly, leave this field empty "
"to repeat the prompt or write a command starting with a slash:\n"
"- '/w <width>' will set the width of the generated image\n"
"- '/h <height>' will set the height of the generated image\n"
"- '/s <seed>' sets the next seed\n"
"- '/g <guidance>' sets the guidance (flux-dev only)\n"
"- '/n <steps>' sets the number of steps\n"
"- '/q' to quit"
)
# 循环读取用户输入,直到输入不以斜杠开头
while (prompt := input(user_question)).startswith("/"):
# 处理以 "/w" 开头的命令,设置宽度
if prompt.startswith("/w"):
# 如果命令中没有空格,提示无效命令并继续
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
# 解析命令中的宽度值并设置为16的倍数
_, width = prompt.split()
options.width = 16 * (int(width) // 16)
# 打印设置的宽度和高度,以及总像素数
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height *options.width/1e6:.2f}MP)"
)
# 处理以 "/h" 开头的命令,设置高度
elif prompt.startswith("/h"):
# 如果命令中没有空格,提示无效命令并继续
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
# 解析命令中的高度值并设置为16的倍数
_, height = prompt.split()
options.height = 16 * (int(height) // 16)
# 打印设置的宽度和高度,以及总像素数
print(
f"Setting resolution to {options.width} x {options.height} "
f"({options.height *options.width/1e6:.2f}MP)"
)
# 处理以 "/g" 开头的命令,设置指导值
elif prompt.startswith("/g"):
# 如果命令中没有空格,提示无效命令并继续
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
# 解析命令中的指导值
_, guidance = prompt.split()
options.guidance = float(guidance)
# 打印设置的指导值
print(f"Setting guidance to {options.guidance}")
# 处理以 "/s" 开头的命令,设置种子值
elif prompt.startswith("/s"):
# 如果命令中没有空格,提示无效命令并继续
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
# 解析命令中的种子值
_, seed = prompt.split()
options.seed = int(seed)
# 打印设置的种子值
print(f"Setting seed to {options.seed}")
# 处理以 "/n" 开头的命令,设置步骤数
elif prompt.startswith("/n"):
# 如果命令中没有空格,提示无效命令并继续
if prompt.count(" ") != 1:
print(f"Got invalid command '{prompt}'\n{usage}")
continue
# 解析命令中的步骤数
_, steps = prompt.split()
options.num_steps = int(steps)
# 打印设置的步骤数
print(f"Setting seed to {options.num_steps}")
# 处理以 "/q" 开头的命令,退出循环
elif prompt.startswith("/q"):
print("Quitting")
return None
else:
# 如果命令不以已知前缀开头,提示无效命令并显示用法
if not prompt.startswith("/h"):
print(f"Got invalid command '{prompt}'\n{usage}")
print(usage)
# 如果输入不为空,将其设置为提示
if prompt != "":
options.prompt = prompt
# 返回更新后的选项对象
return options
@torch.inference_mode()
def main(
name: str = "flux-schnell",
width: int = 1360,
height: int = 768,
seed: int | None = None,
prompt: str = (
"a photo of a forest with mist swirling around the tree trunks. The word "
'"FLUX" is painted over it in big, red brush strokes with visible texture'
),
device: str = "cuda" if torch.cuda.is_available() else "cpu",
num_steps: int | None = None,
loop: bool = False,
guidance: float = 3.5,
offload: bool = False,
output_dir: str = "output",
add_sampling_metadata: bool = True,
):
"""
Sample the flux model. Either interactively (set `--loop`) or run for a
single image.
Args:
name: Name of the model to load
height: height of the sample in pixels (should be a multiple of 16)
width: width of the sample in pixels (should be a multiple of 16)
seed: Set a seed for sampling
output_name: where to save the output image, `{idx}` will be replaced
by the index of the sample
prompt: Prompt used for sampling
device: Pytorch device
num_steps: number of sampling steps (default 4 for schnell, 50 for guidance distilled)
loop: start an interactive session and sample multiple times
guidance: guidance value used for guidance distillation
add_sampling_metadata: Add the prompt to the image Exif metadata
"""
# Initialize an NSFW image classification pipeline with the specified model and device
nsfw_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=device)
# Check if the specified model name is valid
if name not in configs:
available = ", ".join(configs.keys())
raise ValueError(f"Got unknown model name: {name}, chose from {available}")
# Set the PyTorch device based on the provided device string
torch_device = torch.device(device)
# Determine the number of sampling steps based on the model name
if num_steps is None:
num_steps = 4 if name == "flux-schnell" else 50
# Adjust height and width to be multiples of 16 for compatibility
height = 16 * (height // 16)
width = 16 * (width // 16)
# Construct the output file path and handle directory and index management
output_name = os.path.join(output_dir, "img_{idx}.jpg")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
idx = 0
else:
fns = [fn for fn in iglob(output_name.format(idx="*")) if re.search(r"img_[0-9]+\.jpg$", fn)]
if len(fns) > 0:
idx = max(int(fn.split("_")[-1].split(".")[0]) for fn in fns) + 1
else:
idx = 0
# Initialize components for the sampling process
t5 = load_t5(torch_device, max_length=256 if name == "flux-schnell" else 512)
clip = load_clip(torch_device)
model = load_flow_model(name, device="cpu" if offload else torch_device)
ae = load_ae(name, device="cpu" if offload else torch_device)
# Create a random number generator and sampling options
rng = torch.Generator(device="cpu")
opts = SamplingOptions(
prompt=prompt,
width=width,
height=height,
num_steps=num_steps,
guidance=guidance,
seed=seed,
)
# If loop mode is enabled, adjust the options based on the prompt
if loop:
opts = parse_prompt(opts)
# 当 opts 不为 None 时持续循环
while opts is not None:
# 如果 opts 中没有种子,则生成一个新的种子
if opts.seed is None:
opts.seed = rng.seed()
# 打印生成过程的种子和提示
print(f"Generating with seed {opts.seed}:\n{opts.prompt}")
# 记录当前时间以计算生成时间
t0 = time.perf_counter()
# 准备输入噪声数据
x = get_noise(
1,
opts.height,
opts.width,
device=torch_device,
dtype=torch.bfloat16,
seed=opts.seed,
)
# 将种子置为 None 以防止重复使用
opts.seed = None
# 如果需要将模型移至 CPU,清理 CUDA 缓存,并将模型移动到指定设备
if offload:
ae = ae.cpu()
torch.cuda.empty_cache()
t5, clip = t5.to(torch_device), clip.to(torch_device)
# 准备输入数据,包括将 T5 和 CLIP 模型的输出、噪声以及提示整理成输入
inp = prepare(t5, clip, x, prompt=opts.prompt)
# 获取时间步的调度
timesteps = get_schedule(opts.num_steps, inp["img"].shape[1], shift=(name != "flux-schnell"))
# 如果需要将模型移至 CPU,清理 CUDA 缓存,并将模型移动到 GPU
if offload:
t5, clip = t5.cpu(), clip.cpu()
torch.cuda.empty_cache()
model = model.to(torch_device)
# 对初始噪声进行去噪处理
x = denoise(model, **inp, timesteps=timesteps, guidance=opts.guidance)
# 如果需要将模型移至 CPU,清理 CUDA 缓存,并将自动编码器的解码器移至当前设备
if offload:
model.cpu()
torch.cuda.empty_cache()
ae.decoder.to(x.device)
# 将潜在变量解码到像素空间
x = unpack(x.float(), opts.height, opts.width)
with torch.autocast(device_type=torch_device.type, dtype=torch.bfloat16):
x = ae.decode(x)
# 记录解码处理时间
t1 = time.perf_counter()
# 格式化输出文件名
fn = output_name.format(idx=idx)
print(f"Done in {t1 - t0:.1f}s. Saving {fn}")
# 将图像数据带入 PIL 格式并保存
x = x.clamp(-1, 1)
x = embed_watermark(x.float())
x = rearrange(x[0], "c h w -> h w c")
# 从 numpy 数组创建 PIL 图像对象
img = Image.fromarray((127.5 * (x + 1.0)).cpu().byte().numpy())
# 进行 NSFW 内容检测
nsfw_score = [x["score"] for x in nsfw_classifier(img) if x["label"] == "nsfw"][0]
# 如果 NSFW 分数低于阈值,则保存图像及其 EXIF 元数据
if nsfw_score < NSFW_THRESHOLD:
exif_data = Image.Exif()
exif_data[ExifTags.Base.Software] = "AI generated;txt2img;flux"
exif_data[ExifTags.Base.Make] = "Black Forest Labs"
exif_data[ExifTags.Base.Model] = name
if add_sampling_metadata:
exif_data[ExifTags.Base.ImageDescription] = prompt
img.save(fn, exif=exif_data, quality=95, subsampling=0)
# 增加图像索引
idx += 1
else:
print("Your generated image may contain NSFW content.")
# 如果设置了循环,则解析新的提示并继续,否则退出循环
if loop:
print("-" * 80)
opts = parse_prompt(opts)
else:
opts = None
# 定义主函数
def app():
# 使用 Fire 库将 main 函数作为命令行接口
Fire(main)
# 检查是否为主模块运行
if __name__ == "__main__":
# 调用 app 函数
app()
.\flux\src\flux\math.py
# 导入 PyTorch 库和 einops 的 rearrange 函数
import torch
from einops import rearrange
from torch import Tensor
# 注意力机制函数
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
# 对 q 和 k 应用相对位置编码
q, k = apply_rope(q, k, pe)
# 使用缩放点积注意力计算输出
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
# 重新排列输出张量的维度
x = rearrange(x, "B H L D -> B L (H D)")
# 返回处理后的张量
return x
# 相对位置编码函数
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
# 确保维度是偶数
assert dim % 2 == 0
# 计算尺度因子
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
# 计算 omega 值
omega = 1.0 / (theta**scale)
# 通过爱因斯坦求和计算输出
out = torch.einsum("...n,d->...nd", pos, omega)
# 创建旋转矩阵
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
# 重新排列旋转矩阵的维度
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
# 转换为 float 类型并返回
return out.float()
# 应用相对位置编码的辅助函数
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
# 重新排列 q 和 k 的维度并转换为 float 类型
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
# 计算 q 和 k 的编码输出
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
# 恢复原始维度并返回
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
.\flux\src\flux\model.py
# 从 dataclasses 模块导入 dataclass 装饰器
from dataclasses import dataclass
# 导入 PyTorch 和相关模块
import torch
from torch import Tensor, nn
# 从 flux.modules.layers 模块导入特定的类
from flux.modules.layers import (DoubleStreamBlock, EmbedND, LastLayer,
MLPEmbedder, SingleStreamBlock,
timestep_embedding)
# 定义包含模型参数的类
@dataclass
class FluxParams:
# 输入通道数
in_channels: int
# 输入向量维度
vec_in_dim: int
# 上下文输入维度
context_in_dim: int
# 隐藏层大小
hidden_size: int
# MLP 比例
mlp_ratio: float
# 头数
num_heads: int
# 网络深度
depth: int
# 单流块的深度
depth_single_blocks: int
# 轴维度列表
axes_dim: list[int]
# theta 参数
theta: int
# 是否使用 QKV 偏置
qkv_bias: bool
# 是否使用引导嵌入
guidance_embed: bool
# 定义 Flux 模型类
class Flux(nn.Module):
"""
Transformer 模型用于序列上的流匹配。
"""
# 初始化方法
def __init__(self, params: FluxParams):
super().__init__()
# 保存参数
self.params = params
# 输入通道数
self.in_channels = params.in_channels
# 输出通道数与输入通道数相同
self.out_channels = self.in_channels
# 确保隐藏层大小可以被头数整除
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
# 计算位置编码维度
pe_dim = params.hidden_size // params.num_heads
# 确保轴维度总和与位置编码维度匹配
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
# 隐藏层大小
self.hidden_size = params.hidden_size
# 头数
self.num_heads = params.num_heads
# 初始化位置嵌入层
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
# 初始化图像输入线性层
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
# 初始化时间嵌入层
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
# 初始化向量嵌入层
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
# 初始化引导嵌入层(如果需要的话)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
)
# 初始化文本输入线性层
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
# 创建双流块的模块列表
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
)
for _ in range(params.depth)
]
)
# 创建单流块的模块列表
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
for _ in range(params.depth_single_blocks)
]
)
# 初始化最终层
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
# 前向传播方法
def forward(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
y: Tensor,
guidance: Tensor | None = None,
) -> Tensor: # 定义返回类型为 Tensor 的函数
# 检查 img 和 txt 张量是否都具有 3 个维度
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# 对输入的 img 张量进行初步处理
img = self.img_in(img)
# 计算时间步嵌入向量,并通过 self.time_in 处理
vec = self.time_in(timestep_embedding(timesteps, 256))
# 如果启用了指导嵌入,则处理指导嵌入
if self.params.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
# 将指导嵌入向量添加到 vec 中
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
# 将其他向量添加到 vec 中
vec = vec + self.vector_in(y)
# 对 txt 张量进行处理
txt = self.txt_in(txt)
# 将 txt_ids 和 img_ids 按维度 1 拼接
ids = torch.cat((txt_ids, img_ids), dim=1)
# 计算位置编码
pe = self.pe_embedder(ids)
# 对 double_blocks 中的每个块进行处理
for block in self.double_blocks:
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
# 将 txt 和 img 张量按维度 1 拼接
img = torch.cat((txt, img), 1)
# 对 single_blocks 中的每个块进行处理
for block in self.single_blocks:
img = block(img, vec=vec, pe=pe)
# 截取 img 张量,去掉前面的 txt 部分
img = img[:, txt.shape[1] :, ...]
# 最终处理 img 张量,返回结果
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
.\flux\src\flux\modules\autoencoder.py
# 从 dataclasses 模块导入 dataclass 装饰器
from dataclasses import dataclass
# 导入 PyTorch 库
import torch
# 从 einops 模块导入 rearrange 函数
from einops import rearrange
# 从 torch 库导入 Tensor 和 nn 模块
from torch import Tensor, nn
# 定义 AutoEncoder 的参数数据类
@dataclass
class AutoEncoderParams:
resolution: int # 图像分辨率
in_channels: int # 输入通道数
ch: int # 基本通道数
out_ch: int # 输出通道数
ch_mult: list[int] # 通道数的增减比例
num_res_blocks: int # 残差块数量
z_channels: int # 潜在通道数
scale_factor: float # 缩放因子
shift_factor: float # 偏移因子
# 定义 swish 激活函数
def swish(x: Tensor) -> Tensor:
# 使用 sigmoid 函数调节 x 的激活值
return x * torch.sigmoid(x)
# 定义注意力块类
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
# 初始化归一化层
self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
# 初始化用于计算注意力的卷积层
self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)
# 注意力机制函数
def attention(self, h_: Tensor) -> Tensor:
# 归一化输入
h_ = self.norm(h_)
# 计算 q, k, v
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# 获取 q, k, v 的维度
b, c, h, w = q.shape
# 重排列 q, k, v
q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
# 应用缩放点积注意力
h_ = nn.functional.scaled_dot_product_attention(q, k, v)
# 将输出重排列为原始维度
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
# 前向传播函数
def forward(self, x: Tensor) -> Tensor:
# 添加注意力机制后的输出到原始输入
return x + self.proj_out(self.attention(x))
# 定义残差块类
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
# 初始化归一化层和卷积层
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# 如果输入和输出通道数不同,初始化快捷连接
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
# 前向传播函数
def forward(self, x):
h = x
# 通过第一层归一化、激活和卷积
h = self.norm1(h)
h = swish(h)
h = self.conv1(h)
# 通过第二层归一化、激活和卷积
h = self.norm2(h)
h = swish(h)
h = self.conv2(h)
# 如果输入和输出通道数不同,应用快捷连接
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
# 返回残差连接的结果
return x + h
# 定义下采样类
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# 在 torch conv 中没有非对称填充,必须手动处理
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
# 前向传播函数,接受一个 Tensor 作为输入
def forward(self, x: Tensor):
# 定义 padding 的大小,分别是右边 1、下边 1
pad = (0, 1, 0, 1)
# 对输入 Tensor 进行 padding,填充值为 0
x = nn.functional.pad(x, pad, mode="constant", value=0)
# 将 padding 过的 Tensor 通过卷积层
x = self.conv(x)
# 返回卷积后的结果
return x
# 定义上采样模块,继承自 nn.Module
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
# 创建卷积层,用于对输入特征图进行卷积操作
self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor):
# 对输入特征图进行双线性插值上采样,扩大尺寸为原来的2倍
x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
# 对上采样后的特征图应用卷积层
x = self.conv(x)
# 返回处理后的特征图
return x
# 定义编码器模块,继承自 nn.Module
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# 输入层卷积,用于初始化特征图
self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
block_in = self.ch
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
# 设置每层的输入和输出通道数
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
# 添加残差块到当前层
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
# 添加下采样层
down.downsample = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# 中间层,包括两个残差块和一个注意力块
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# 输出层,包括归一化和卷积层
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x: Tensor) -> Tensor:
# 对输入特征图进行下采样
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1])
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# 中间处理
h = hs[-1]
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# 输出处理
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
# 返回最终处理后的特征图
return h
# 定义解码器模块,继承自 nn.Module
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
# 调用父类的初始化方法
super().__init__()
# 保存输入通道数
self.ch = ch
# 保存多分辨率通道数的数量
self.num_resolutions = len(ch_mult)
# 保存残差块的数量
self.num_res_blocks = num_res_blocks
# 保存图像分辨率
self.resolution = resolution
# 保存输入通道数
self.in_channels = in_channels
# 计算最终分辨率的缩放因子
self.ffactor = 2 ** (self.num_resolutions - 1)
# 计算最低分辨率下的输入通道数和分辨率
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
# 定义潜在变量 z 的形状
self.z_shape = (1, z_channels, curr_res, curr_res)
# z 到 block_in 的卷积层
self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
# 中间层模块
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)
# 上采样模块
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
# 当前分辨率下的输出通道数
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
# 添加残差块
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
# 添加上采样层
up.upsample = Upsample(block_in)
curr_res = curr_res * 2
# 将上采样模块插入列表开头,保持顺序一致
self.up.insert(0, up)
# 输出归一化层
self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
# 输出卷积层
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def forward(self, z: Tensor) -> Tensor:
# 将 z 传入 conv_in 层
h = self.conv_in(z)
# 通过中间层
h = self.mid.block_1(h)
h = self.mid.attn_1(h)
h = self.mid.block_2(h)
# 上采样过程
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
# 上采样
h = self.up[i_level].upsample(h)
# 结束层
h = self.norm_out(h)
h = swish(h)
h = self.conv_out(h)
# 返回最终输出
return h
# 定义对角高斯分布的神经网络模块
class DiagonalGaussian(nn.Module):
# 初始化方法,定义是否采样及分块维度
def __init__(self, sample: bool = True, chunk_dim: int = 1):
super().__init__()
# 是否进行采样
self.sample = sample
# 进行分块操作的维度
self.chunk_dim = chunk_dim
# 前向传播方法
def forward(self, z: Tensor) -> Tensor:
# 将输入张量 z 按指定维度 chunk_dim 划分为两个张量 mean 和 logvar
mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
if self.sample:
# 如果需要采样,计算标准差并从标准正态分布中生成随机样本
std = torch.exp(0.5 * logvar)
return mean + std * torch.randn_like(mean)
else:
# 否则只返回均值
return mean
# 定义自编码器的神经网络模块
class AutoEncoder(nn.Module):
# 初始化方法,定义编码器、解码器及高斯分布
def __init__(self, params: AutoEncoderParams):
super().__init__()
# 创建编码器实例,传入相应参数
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
# 创建解码器实例,传入相应参数
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
# 创建对角高斯分布实例
self.reg = DiagonalGaussian()
# 设置缩放因子和偏移因子
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
# 编码方法,将输入 x 进行编码并调整缩放和偏移
def encode(self, x: Tensor) -> Tensor:
# 通过编码器获取 z,随后通过对角高斯分布进行处理
z = self.reg(self.encoder(x))
# 对 z 进行缩放和偏移
z = self.scale_factor * (z - self.shift_factor)
return z
# 解码方法,将 z 解码为输出
def decode(self, z: Tensor) -> Tensor:
# 对 z 进行逆操作,恢复到编码前的尺度
z = z / self.scale_factor + self.shift_factor
# 使用解码器进行解码
return self.decoder(z)
# 前向传播方法,执行编码和解码
def forward(self, x: Tensor) -> Tensor:
# 先编码再解码
return self.decode(self.encode(x))
.\flux\src\flux\modules\conditioner.py
# 从 PyTorch 和 Transformers 库导入必要的模块
from torch import Tensor, nn
from transformers import (CLIPTextModel, CLIPTokenizer, T5EncoderModel,
T5Tokenizer)
# 定义一个用于获取文本嵌入的类 HFEmbedder,继承自 nn.Module
class HFEmbedder(nn.Module):
# 初始化方法
def __init__(self, version: str, max_length: int, **hf_kwargs):
# 调用父类的初始化方法
super().__init__()
# 判断是否使用 CLIP 模型,根据版本名进行判断
self.is_clip = version.startswith("openai")
# 设置最大长度
self.max_length = max_length
# 根据是否使用 CLIP 模型选择输出的键
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
# 如果使用 CLIP 模型
if self.is_clip:
# 从预训练模型加载 tokenizer
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length)
# 从预训练模型加载 HF 模块
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs)
else:
# 如果使用 T5 模型
# 从预训练模型加载 tokenizer
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length)
# 从预训练模型加载 HF 模块
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs)
# 将模型设置为评估模式,并且不计算梯度
self.hf_module = self.hf_module.eval().requires_grad_(False)
# 前向传播方法,处理输入文本并返回嵌入
def forward(self, text: list[str]) -> Tensor:
# 使用 tokenizer 对文本进行编码
batch_encoding = self.tokenizer(
text,
truncation=True, # 对超长文本进行截断
max_length=self.max_length, # 设置最大长度
return_length=False, # 不返回文本长度
return_overflowing_tokens=False, # 不返回溢出的标记
padding="max_length", # 填充到最大长度
return_tensors="pt", # 返回 PyTorch 张量
)
# 使用 HF 模块进行前向传播计算
outputs = self.hf_module(
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), # 将输入 ID 移动到模型所在设备
attention_mask=None, # 不使用注意力掩码
output_hidden_states=False, # 不返回隐藏状态
)
# 返回指定键对应的输出
return outputs[self.output_key]
.\flux\src\flux\modules\layers.py
# 导入数学库
import math
# 从 dataclasses 模块导入 dataclass 装饰器
from dataclasses import dataclass
# 导入 PyTorch 库
import torch
# 从 einops 库导入 rearrange 函数
from einops import rearrange
# 从 torch 库导入 Tensor 和 nn 模块
from torch import Tensor, nn
# 从 flux.math 模块导入 attention 和 rope 函数
from flux.math import attention, rope
# 定义一个嵌入类,用于处理 N 维数据
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
# 初始化维度、角度和轴维度
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor) -> Tensor:
# 获取输入 Tensor 的最后一维大小
n_axes = ids.shape[-1]
# 对每个轴应用 rope 函数并在-3维上连接
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
# 在第1维上增加一个维度
return emb.unsqueeze(1)
# 定义时间步嵌入函数,创建正弦时间步嵌入
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
创建正弦时间步嵌入。
:param t: 一维 Tensor,包含每批次元素的索引,可以是小数。
:param dim: 输出的维度。
:param max_period: 控制嵌入的最小频率。
:return: 一个 (N, D) 维的 Tensor,表示位置嵌入。
"""
# 根据时间因子缩放输入 Tensor
t = time_factor * t
# 计算半维度
half = dim // 2
# 计算频率
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
# 计算嵌入
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
# 如果维度是奇数,追加零向量
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
# 如果 t 是浮点类型,将嵌入转换为 t 的类型
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
# 定义一个 MLP 嵌入器类
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
# 初始化输入层、激活函数和输出层
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor) -> Tensor:
# 执行前向传递,经过输入层、激活函数和输出层
return self.out_layer(self.silu(self.in_layer(x)))
# 定义 RMSNorm 类
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
# 初始化尺度参数
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
# 将输入转换为浮点数
x_dtype = x.dtype
x = x.float()
# 计算均方根归一化
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
# 应用归一化和尺度参数
return (x * rrms).to(dtype=x_dtype) * self.scale
# 定义 QKNorm 类
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
# 初始化查询和键的归一化
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
# 对查询和键进行归一化
q = self.query_norm(q)
k = self.key_norm(k)
# 返回归一化后的查询、键以及原始值
return q.to(v), k.to(v)
# 定义自注意力机制类
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
# 设置头的数量和每个头的维度
self.num_heads = num_heads
head_dim = dim // num_heads
# 初始化查询、键、值线性变换层
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
# 初始化归一化层
self.norm = QKNorm(head_dim)
# 初始化投影层
self.proj = nn.Linear(dim, dim)
# 前向传播函数,接受输入张量和位置编码,返回处理后的张量
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
# 将输入张量通过 qkv 层,生成查询、键、值的联合表示
qkv = self.qkv(x)
# 重新排列 qkv 张量,将其拆分成查询 (q)、键 (k)、值 (v),并根据头数 (num_heads) 分组
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
# 对查询、键和值进行归一化处理
q, k = self.norm(q, k, v)
# 计算注意力权重并应用于值,得到加权后的输出
x = attention(q, k, v, pe=pe)
# 通过 proj 层将注意力结果映射到输出空间
x = self.proj(x)
# 返回最终的输出张量
return x
# 定义一个包含三个张量的结构体 ModulationOut
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
# 定义一个继承自 nn.Module 的 Modulation 类
class Modulation(nn.Module):
# 初始化方法,设置维度和是否双倍
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double # 存储是否为双倍标志
self.multiplier = 6 if double else 3 # 根据标志设置 multiplier
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) # 定义线性层
# 前向传播方法,处理输入张量并返回结果
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
# 应用激活函数后,进行线性变换,并将结果按 multiplier 切分
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
# 返回切分后的结果,前半部分和后半部分(如果是双倍)
return (
ModulationOut(*out[:3]), # 前三部分
ModulationOut(*out[3:]) if self.is_double else None, # 后三部分(如果是双倍)
)
# 定义一个继承自 nn.Module 的 DoubleStreamBlock 类
class DoubleStreamBlock(nn.Module):
# 初始化方法,设置隐藏层大小、注意力头数、MLP 比例等
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio) # 计算 MLP 隐藏层维度
self.num_heads = num_heads # 存储注意力头数
self.hidden_size = hidden_size # 存储隐藏层大小
self.img_mod = Modulation(hidden_size, double=True) # 定义图像模调模块
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # 定义图像的第一层归一化
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) # 定义图像的自注意力模块
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # 定义图像的第二层归一化
self.img_mlp = nn.Sequential( # 定义图像的 MLP 网络
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), # 第一层线性变换
nn.GELU(approximate="tanh"), # 激活函数
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), # 第二层线性变换
)
self.txt_mod = Modulation(hidden_size, double=True) # 定义文本模调模块
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # 定义文本的第一层归一化
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) # 定义文本的自注意力模块
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) # 定义文本的第二层归一化
self.txt_mlp = nn.Sequential( # 定义文本的 MLP 网络
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), # 第一层线性变换
nn.GELU(approximate="tanh"), # 激活函数
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), # 第二层线性变换
)
# 前向传播函数,处理图像和文本输入,返回更新后的图像和文本
def forward(self, img: Tensor
# 定义一个 DiT 模块,其中包含并行的线性层以及调整的调制接口
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float | None = None,
):
super().__init__()
# 初始化隐藏层维度和注意力头的数量
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
# 计算缩放因子
self.scale = qk_scale or head_dim**-0.5
# 计算 MLP 层的隐藏维度
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# 定义用于 QKV 和 MLP 输入的线性层
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# 定义用于投影和 MLP 输出的线性层
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
# 定义归一化层
self.norm = QKNorm(head_dim)
# 定义层归一化层
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# 定义激活函数和调制层
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
# 通过调制层计算调制因子
mod, _ = self.modulation(vec)
# 对输入进行预归一化并应用调制
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
# 将线性层的输出分割为 QKV 和 MLP 输入
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
# 重新排列 QKV 张量,并进行归一化
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
# 计算注意力
attn = attention(q, k, v, pe=pe)
# 计算 MLP 流中的激活,拼接结果并通过第二个线性层
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
# 将原始输入与输出加权和相加
return x + mod.gate * output
# 定义最后一层的网络模块
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
# 定义最终的层归一化
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
# 定义线性层将隐藏维度映射到最终输出通道
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
# 定义自适应层归一化调制
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
# 通过调制层计算 shift 和 scale
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
# 归一化输入并应用 shift 和 scale
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
# 通过线性层计算最终输出
x = self.linear(x)
return x
.\flux\src\flux\sampling.py
# 导入数学库
import math
# 导入 Callable 类型
from typing import Callable
# 导入 PyTorch 库
import torch
# 从 einops 导入 rearrange 和 repeat 函数
from einops import rearrange, repeat
# 从 torch 导入 Tensor 类型
from torch import Tensor
# 从 model 模块导入 Flux 类
from .model import Flux
# 从 modules.conditioner 模块导入 HFEmbedder 类
from .modules.conditioner import HFEmbedder
# 生成噪声的函数
def get_noise(
num_samples: int, # 生成的样本数量
height: int, # 高度
width: int, # 宽度
device: torch.device, # 计算设备
dtype: torch.dtype, # 数据类型
seed: int, # 随机种子
):
return torch.randn(
num_samples, # 样本数量
16, # 通道数
# 允许打包的高度和宽度
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
device=device, # 指定设备
dtype=dtype, # 指定数据类型
generator=torch.Generator(device=device).manual_seed(seed), # 使用指定种子初始化随机生成器
)
# 准备数据的函数
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]:
bs, c, h, w = img.shape # 获取批量大小、通道数、高度和宽度
if bs == 1 and not isinstance(prompt, str): # 如果批量大小为1且提示不是字符串
bs = len(prompt) # 设置批量大小为提示列表的长度
# 调整图像形状以适应后续处理
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1: # 如果批量大小为1且实际批量大于1
img = repeat(img, "1 ... -> bs ...", bs=bs) # 复制图像以适应批量大小
img_ids = torch.zeros(h // 2, w // 2, 3) # 创建图像ID的零张量
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] # 设置行ID
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] # 设置列ID
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) # 将ID张量重复以适应批量大小
if isinstance(prompt, str): # 如果提示是字符串
prompt = [prompt] # 将提示转换为列表
txt = t5(prompt) # 使用 t5 模型处理文本提示
if txt.shape[0] == 1 and bs > 1: # 如果文本的批量大小为1且实际批量大于1
txt = repeat(txt, "1 ... -> bs ...", bs=bs) # 复制文本以适应批量大小
txt_ids = torch.zeros(bs, txt.shape[1], 3) # 创建文本ID的零张量
vec = clip(prompt) # 使用 clip 模型处理文本提示
if vec.shape[0] == 1 and bs > 1: # 如果向量的批量大小为1且实际批量大于1
vec = repeat(vec, "1 ... -> bs ...", bs=bs) # 复制向量以适应批量大小
return {
"img": img, # 返回处理后的图像
"img_ids": img_ids.to(img.device), # 返回图像ID,转移到图像所在设备
"txt": txt.to(img.device), # 返回处理后的文本,转移到图像所在设备
"txt_ids": txt_ids.to(img.device), # 返回文本ID,转移到图像所在设备
"vec": vec.to(img.device), # 返回处理后的向量,转移到图像所在设备
}
# 计算时间移位的函数
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) # 计算时间移位值
# 获取线性函数的函数
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 # 默认参数值
) -> Callable[[float], float]: # 返回一个接受浮点数并返回浮点数的函数
m = (y2 - y1) / (x2 - x1) # 计算线性函数的斜率
b = y1 - m * x1 # 计算线性函数的截距
return lambda x: m * x + b # 返回线性函数
# 获取调度时间的函数
def get_schedule(
num_steps: int, # 步骤数量
image_seq_len: int, # 图像序列长度
base_shift: float = 0.5, # 基础偏移量
max_shift: float = 1.15, # 最大偏移量
shift: bool = True, # 是否应用偏移
) -> list[float]: # 返回浮点数列表
# 生成从1到0的时间步长
timesteps = torch.linspace(1, 0, num_steps + 1)
# 如果启用了偏移
if shift:
# 基于线性估算估计 mu
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps) # 应用时间移位
return timesteps.tolist() # 返回时间步长的列表
# 去噪函数
def denoise(
model: Flux, # 模型
# 模型输入
img: Tensor, # 输入图像
img_ids: Tensor, # 图像ID
txt: Tensor, # 处理后的文本
txt_ids: Tensor, # 文本ID
vec: Tensor, # 处理后的向量
# 采样参数
timesteps: list[float], # 时间步长
guidance: float = 4.0, # 引导强度
):
# 为每个图像创建引导向量
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
# 遍历当前时间步和前一个时间步的配对
for t_curr, t_prev in zip(timesteps[:-1], timesteps[1:]):
# 创建一个张量 t_vec,其形状与 img 的第一个维度相同,值为 t_curr,数据类型和设备与 img 相同
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
# 使用当前时间步 t_vec 及其他参数调用模型,获得预测结果 pred
pred = model(
img=img,
img_ids=img_ids,
txt=txt,
txt_ids=txt_ids,
y=vec,
timesteps=t_vec,
guidance=guidance_vec,
)
# 更新 img,增加预测结果 pred 和时间步差 (t_prev - t_curr) 的乘积
img = img + (t_prev - t_curr) * pred
# 返回更新后的 img
return img
# 定义一个函数,用于对 Tensor 进行重排列,调整维度
def unpack(x: Tensor, height: int, width: int) -> Tensor:
# 使用 rearrange 函数重排列 Tensor 的维度
return rearrange(
x,
# 指定输入维度和输出维度的转换规则
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
# 根据输入的 height 和 width 计算重排列后的维度
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
.\flux\src\flux\util.py
# 导入操作系统模块
import os
# 从 dataclasses 模块导入 dataclass 装饰器,用于创建数据类
from dataclasses import dataclass
# 导入 PyTorch 库,用于张量操作和深度学习
import torch
# 从 einops 库导入 rearrange 函数,用于重排列和转换张量
from einops import rearrange
# 从 huggingface_hub 库导入 hf_hub_download 函数,用于下载模型文件
from huggingface_hub import hf_hub_download
# 从 imwatermark 库导入 WatermarkEncoder 类,用于在图像中嵌入水印
from imwatermark import WatermarkEncoder
# 从 safetensors 库导入 load_file 函数,并重命名为 load_sft,用于加载安全张量文件
from safetensors.torch import load_file as load_sft
# 从 flux.model 模块导入 Flux 类和 FluxParams 类,用于模型定义和参数配置
from flux.model import Flux, FluxParams
# 从 flux.modules.autoencoder 模块导入 AutoEncoder 类和 AutoEncoderParams 类,用于自动编码器定义和参数配置
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
# 从 flux.modules.conditioner 模块导入 HFEmbedder 类,用于条件嵌入
from flux.modules.conditioner import HFEmbedder
# 定义一个数据类 ModelSpec,用于保存模型的各种规格和参数
@dataclass
class ModelSpec:
# 定义模型参数
params: FluxParams
# 定义自动编码器参数
ae_params: AutoEncoderParams
# 定义检查点路径(可以为 None)
ckpt_path: str | None
# 定义自动编码器路径(可以为 None)
ae_path: str | None
# 定义模型仓库 ID(可以为 None)
repo_id: str | None
# 定义流文件仓库 ID(可以为 None)
repo_flow: str | None
# 定义自动编码器仓库 ID(可以为 None)
repo_ae: str | None
# 定义配置字典 configs,包含不同模型的规格
configs = {
# 配置 "flux-dev" 模型的规格
"flux-dev": ModelSpec(
# 设置模型仓库 ID
repo_id="black-forest-labs/FLUX.1-dev",
# 设置流文件仓库 ID
repo_flow="flux1-dev.safetensors",
# 设置自动编码器仓库 ID
repo_ae="ae.safetensors",
# 从环境变量获取检查点路径
ckpt_path=os.getenv("FLUX_DEV"),
# 设置 Flux 模型参数
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=True,
),
# 从环境变量获取自动编码器路径
ae_path=os.getenv("AE"),
# 设置自动编码器参数
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
# 配置 "flux-schnell" 模型的规格
"flux-schnell": ModelSpec(
# 设置模型仓库 ID
repo_id="black-forest-labs/FLUX.1-schnell",
# 设置流文件仓库 ID
repo_flow="flux1-schnell.safetensors",
# 设置自动编码器仓库 ID
repo_ae="ae.safetensors",
# 从环境变量获取检查点路径
ckpt_path=os.getenv("FLUX_SCHNELL"),
# 设置 Flux 模型参数
params=FluxParams(
in_channels=64,
vec_in_dim=768,
context_in_dim=4096,
hidden_size=3072,
mlp_ratio=4.0,
num_heads=24,
depth=19,
depth_single_blocks=38,
axes_dim=[16, 56, 56],
theta=10_000,
qkv_bias=True,
guidance_embed=False,
),
# 从环境变量获取自动编码器路径
ae_path=os.getenv("AE"),
# 设置自动编码器参数
ae_params=AutoEncoderParams(
resolution=256,
in_channels=3,
ch=128,
out_ch=3,
ch_mult=[1, 2, 4, 4],
num_res_blocks=2,
z_channels=16,
scale_factor=0.3611,
shift_factor=0.1159,
),
),
}
# 定义函数 print_load_warning,用于打印加载警告信息
def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
# 如果缺少的键和意外的键都存在,则分别打印它们的数量和列表
if len(missing) > 0 and len(unexpected) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
print("\n" + "-" * 79 + "\n")
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
# 如果只有缺少的键存在,则打印它们的数量和列表
elif len(missing) > 0:
print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
# 如果意外的键数量大于0
elif len(unexpected) > 0:
# 打印意外的键数量和它们的列表
print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
# 定义加载模型的函数,指定模型名称、设备和是否从 HF 下载
def load_flow_model(name: str, device: str | torch.device = "cuda", hf_download: bool = True):
# 打印初始化模型的消息
print("Init model")
# 获取配置文件中的检查点路径
ckpt_path = configs[name].ckpt_path
# 如果检查点路径为空且需要从 HF 下载
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_flow is not None
and hf_download
):
# 从 HF 下载模型文件
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_flow)
# 根据是否有检查点路径选择设备
with torch.device("meta" if ckpt_path is not None else device):
# 初始化模型并设置数据类型为 bfloat16
model = Flux(configs[name].params).to(torch.bfloat16)
# 如果有检查点路径,加载模型状态
if ckpt_path is not None:
print("Loading checkpoint")
# 加载检查点并转为字符串设备
sd = load_sft(ckpt_path, device=str(device))
# 加载状态字典,并检查缺失或意外的参数
missing, unexpected = model.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
# 返回模型
return model
# 定义加载 T5 模型的函数,指定设备和最大序列长度
def load_t5(device: str | torch.device = "cuda", max_length: int = 512) -> HFEmbedder:
# 创建 HFEmbedder 对象,使用 T5 模型并设置最大序列长度和数据类型
return HFEmbedder("google/t5-v1_1-xxl", max_length=max_length, torch_dtype=torch.bfloat16).to(device)
# 定义加载 CLIP 模型的函数,指定设备
def load_clip(device: str | torch.device = "cuda") -> HFEmbedder:
# 创建 HFEmbedder 对象,使用 CLIP 模型并设置最大序列长度和数据类型
return HFEmbedder("openai/clip-vit-large-patch14", max_length=77, torch_dtype=torch.bfloat16).to(device)
# 定义加载自动编码器的函数,指定名称、设备和是否从 HF 下载
def load_ae(name: str, device: str | torch.device = "cuda", hf_download: bool = True) -> AutoEncoder:
# 获取配置文件中的自动编码器路径
ckpt_path = configs[name].ae_path
# 如果路径为空且需要从 HF 下载
if (
ckpt_path is None
and configs[name].repo_id is not None
and configs[name].repo_ae is not None
and hf_download
):
# 从 HF 下载自动编码器文件
ckpt_path = hf_hub_download(configs[name].repo_id, configs[name].repo_ae)
# 打印初始化自动编码器的消息
print("Init AE")
# 根据是否有检查点路径选择设备
with torch.device("meta" if ckpt_path is not None else device):
# 初始化自动编码器
ae = AutoEncoder(configs[name].ae_params)
# 如果有检查点路径,加载自动编码器状态
if ckpt_path is not None:
# 加载检查点并转为字符串设备
sd = load_sft(ckpt_path, device=str(device))
# 加载状态字典,并检查缺失或意外的参数
missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
print_load_warning(missing, unexpected)
# 返回自动编码器
return ae
# 定义水印嵌入器类
class WatermarkEmbedder:
def __init__(self, watermark):
# 初始化水印和比特位数
self.watermark = watermark
self.num_bits = len(WATERMARK_BITS)
# 初始化水印编码器
self.encoder = WatermarkEncoder()
# 设置水印比特数据
self.encoder.set_watermark("bits", self.watermark)
# 定义一个可调用对象的 `__call__` 方法,用于给输入图像添加预定义的水印
def __call__(self, image: torch.Tensor) -> torch.Tensor:
"""
Adds a predefined watermark to the input image
Args:
image: ([N,] B, RGB, H, W) in range [-1, 1]
Returns:
same as input but watermarked
"""
# 将图像的像素值从范围 [-1, 1] 线性映射到 [0, 1]
image = 0.5 * image + 0.5
# 检查图像张量的形状是否是 4 维 (即 batch size 和通道数)
squeeze = len(image.shape) == 4
if squeeze:
# 如果是 4 维,给图像增加一个额外的维度,变成 5 维
image = image[None, ...]
# 获取图像的 batch size
n = image.shape[0]
# 将图像从 torch 张量转换为 numpy 数组,并调整形状和通道顺序
image_np = rearrange((255 * image).detach().cpu(), "n b c h w -> (n b) h w c").numpy()[:, :, :, ::-1]
# torch (b, c, h, w) in [0, 1] -> numpy (b, h, w, c) [0, 255]
# watermarking libary expects input as cv2 BGR format
# 遍历每张图像,为每张图像应用水印编码
for k in range(image_np.shape[0]):
image_np[k] = self.encoder.encode(image_np[k], "dwtDct")
# 将图像从 numpy 数组转换回 torch 张量,恢复原始的形状和设备
image = torch.from_numpy(rearrange(image_np[:, :, :, ::-1], "(n b) h w c -> n b c h w", n=n)).to(
image.device
)
# 将图像的像素值从 [0, 255] 归一化到 [0, 1]
image = torch.clamp(image / 255, min=0.0, max=1.0)
if squeeze:
# 如果之前添加了额外的维度,则将其移除,恢复原始形状
image = image[0]
# 将图像的像素值从 [0, 1] 转换回 [-1, 1] 范围
image = 2 * image - 1
# 返回处理后的图像
return image
# 固定的 48 位消息,随机选择的
WATERMARK_MESSAGE = 0b001010101111111010000111100111001111010100101110
# bin(x)[2:] 将 x 转换为二进制字符串(去掉前缀 '0b'),然后用 int 将每一位转换为 0 或 1
WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
# 使用提取的位创建 WatermarkEmbedder 对象
embed_watermark = WatermarkEmbedder(WATERMARK_BITS)
.\flux\src\flux\__init__.py
# 尝试从当前包的 `_version` 模块导入 `version` 和 `version_tuple`
try:
from ._version import version as __version__ # type: ignore # type: ignore 用于忽略类型检查器的警告
from ._version import version_tuple
# 如果导入失败(模块不存在),则设置默认的版本信息
except ImportError:
__version__ = "unknown (no version information available)" # 设置版本号为未知
version_tuple = (0, 0, "unknown", "noinfo") # 设置版本元组为未知
# 导入 Path 类以便处理文件路径
from pathlib import Path
# 设置包的名称,将包名中的下划线替换为短横线
PACKAGE = __package__.replace("_", "-")
# 获取当前文件所在目录的路径
PACKAGE_ROOT = Path(__file__).parent
.\flux\src\flux\__main__.py
# 从同一目录下的 cli 模块导入 app 函数
from .cli import app
# 如果当前模块是主程序,则执行 app 函数
if __name__ == "__main__":
app()
标签:Tensor,nn,self,torch,channels,FLUX,源码,device,解析
From: https://www.cnblogs.com/apachecn/p/18398089