简介
梯度提升(Gradient Boosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。
梯度提升分类的工作原理
梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:
- 初始化模型:选择一个初始预测器,这里使用
DummyClassifier
来作为第一个模型。 - 计算梯度:计算每个样本的梯度,梯度是当前预测值与真实标签之间的差异。
- 训练新预测器:用计算得到的梯度作为目标,训练一个新的分类器。
- 更新模型:将新预测器的结果加到现有模型中。
- 重复步骤:重复上述步骤,逐步添加更多的预测器以改进模型的分类能力。
二分类示例
在二分类任务中,梯度提升分类器的工作流程如下:
- 预测概率:通过softmax将预测值转换为概率。
- 更新模型:利用当前的梯度来训练下一个分类器。
代码示例
下面的代码示例展示了如何实现一个梯度提升分类器,包括支持二分类和多分类任务:
from sklearn.tree import DecisionTreeRegressor
from sklearn.dummy import DummyRegressor, DummyClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_digits, load_breast_cancer
import numpy as np
class GradientBoosting:
def __init__(self, S=5, learning_rate=1, max_depth=1,
min_samples_split=2, regression=True, tol=1e-4):
self.S = S
self.learning_rate = learning_rate
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.regression = regression
# 初始化回归树
tree_params = {'max_depth': self.max_depth, 'min_samples_split': self.min_samples_split}
self.models = [DecisionTreeRegressor(**tree_params) for _ in range(S)]
if regression:
# 回归模型的初始模型
self.models.insert(0, DummyRegressor(strategy='mean'))
else:
# 分类模型的初始模型
self.models.insert(0, DummyClassifier(strategy='most_frequent'))
def grad(self, y, h):
return y - h
def fit(self, X, y):
# 训练第一个模型
self.models[0].fit(X, y)
for i in range(self.S):
# 预测
yhat = self.predict(X, self.models[:i+1], with_argmax=False)
# 计算梯度
gradient = self.grad(y, yhat)
# 训练下一个模型
self.models[i+1].fit(X, gradient)
def predict(self, X, models=None, with_argmax=True):
if models is None:
models = self.models
h0 = models[0].predict(X)
boosting = sum(self.learning_rate * model.predict(X) for model in models[1:])
yhat = h0 + boosting
if not self.regression:
# 使用softmax转换为概率
yhat = np.exp(yhat) / np.sum(np.exp(yhat), axis=1, keepdims=True)
if with_argmax:
yhat = np.argmax(yhat, axis=1)
return yhat
# 示例:使用乳腺癌数据集进行二分类
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建和训练梯度提升分类器
gb = GradientBoosting(S=50, learning_rate=0.1, regression=False)
gb.fit(X_train, y_train)
# 预测并计算准确率
y_pred = gb.predict(X_test)
from sklearn.metrics import accuracy_score
print(f'Accuracy: {accuracy_score(y_test, y_pred)}')
总结
梯度提升分类器通过逐步减少分类错误来提高模型的性能。这种方法在处理分类任务时,能够有效提高预测准确率。与回归任务类似,分类任务中的梯度提升也能通过逐步添加预测器来优化模型。通过调整学习率和模型参数,我们可以进一步提高模型的表现。
如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!
欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。
谢谢大家的支持!
标签:Classification,Python,梯度,self,分类,models,yhat,Boosting,模型 From: https://blog.csdn.net/ljd939952281/article/details/141691344