首页 > 编程语言 >CSEC:香港城市大学提出SOTA曝光矫正算法 | CVPR 2024

CSEC:香港城市大学提出SOTA曝光矫正算法 | CVPR 2024

时间:2024-08-28 10:50:48浏览次数:18  
标签:香港城市大学 CSEC SOTA 卷积 偏移 模块 图像 曝光 色彩

CSEC:香港城市大学提出SOTA曝光矫正算法 | CVPR 2024

 

在光照条件不佳下捕获的图像可能同时包含过曝和欠曝。目前的方法主要集中在调整图像亮度上,这可能会加剧欠曝区域的色调失真,并且无法恢复过曝区域的准确颜色。论文提出通过学习估计和校正这种色调偏移,来增强既有过曝又有欠曝的图像。先通过基于UNet的网络推导输入图像的增亮和变暗版本的色彩特征图,然后使用伪正常特征生成器生成伪正常色彩特征图。接着,通过论文提出的COlor Shift Estimation(COSE) 模块来估计推导的增亮(或变暗)色彩特征图与伪正常色彩特征图之间的色调偏移,分别校正过曝和欠曝区域的估计色调偏移。最后,使用提出的COlor MOdulation(COMO) 模块来调制过曝和欠曝区域中分别校正后的颜色,以生成增强图像。

来源:晓飞的算法工程笔记 公众号

论文: Color Shift Estimation-and-Correction for Image Enhancement

Introduction


  现实世界的场景通常涉及广泛的照明条件,这对摄影构成了重大挑战。尽管相机具有自动曝光模式来根据场景亮度确定“理想”的曝光设置,但是在整个图像范围内均匀调整曝光仍可能导致区域过度明亮和过度昏暗,这种欠曝和过曝的区域可能表现出明显的色调失真。欠曝区域相对较高的噪音水平会改变数据分布,导致色调偏移,而过曝区域则会失去原始的色彩。因此,增强这类图像通常涉及到亮度调整和色调偏移校正。

  近年来,已经进行了许多努力来增强不正确曝光的图像。这些方法可以大致分为两类。

  1. 第一类专注于增强过曝或欠曝的图像。一些方法提出学习曝光不变的表示空间,其中不同的曝光水平可以映射到一个标准化和不变的表示中。其他方法则提出将频率信息与空间信息整合,这有助于模拟图像固有的结构特征,从而增强图像的亮度和结构失真。然而,上述方法通常假设过度或欠曝发生在整个图像上,对于同时存在过度曝光和欠曝光的图像(例如,图1(b)),它们效果不佳。
  2. 第二类工作旨在增强同时存在过度曝光和欠曝光的图像,利用局部颜色分布作为先验来引导增强过程。然而,尽管设计了金字塔式的局部颜色分布先验,仍然倾向于产生在大面积均质区域中出现显著色彩偏移的结果(例如,图1(c))。

  本文旨在校正同时存在过度曝光和欠曝光的图像的亮度和色彩失真问题。为了解决这个问题,首先在图1(f)和1(g)中展示了从两个相关数据集(MSECLCDP)中随机抽样的像素的PCA结果。MSEC数据集中每个场景包含五张不同曝光值(EV)的输入图像,而LCDP数据集中每个场景只有一张同时包含过度曝光和欠曝光的输入图像。从这个初步研究中,可以得出了两个观察结果。

  1. 在这两个数据集中,欠曝光像素(绿点)倾向于与过度曝光像素(红点)有相反的分布偏移。
  2. MSEC数据集包含了0 EV输入图像作为曝光标准化过程的参考图像不同,LCDP的图像没有这样的“正常曝光”像素。

  第一个观察结果启发我们考虑估计和校正这样的色彩偏移,而第二个观察结果则启发我们创建伪正常曝光特征图,作为色彩偏移估计和矫正的参考。

  为此,论文提出了一种新方法,联合调整图像亮度并校正色调失真。首先使用基于UNet的网络,从输入图像的增亮和变暗版本中提取过度曝光和欠曝光区域的色彩特征图。接着,伪正常特征生成器基于这些派生的色彩特征图创建伪正常色彩特征图。随后,论文提出了一种新的颜色偏移估计(COSE)模块,分别估计和校正派生的增亮(或变暗)色彩特征图与创建的伪正常色彩特征图之间的色彩偏移,通过在颜色特征域中扩展可变形卷积来实现COSE模块。进一步,论文提出了一种新的颜色调制(COMO)模块,通过定制的交叉注意力机制,在过度曝光和欠曝光区域的分别校正的色彩上进行调制,以生成增强图像。通过在输入图像和估计的变暗/增亮色彩偏移上执行定制的交叉注意力机制来实现COMO模块,图1(d)显示了我们的方法能够生成视觉上令人愉悦的图像。

  论文的主要贡献可以总结如下:

  1. 提出了一种新颖的神经网络方法,通过建模色彩分布的变化来增强同时存在过度曝光和欠曝光的图像。

  2. 提出了一种新颖的神经网络,包括两个新模块:一是用于分别估计和校正过度曝光和欠曝光区域中色彩的新颖颜色偏移估计(COSE)模块,二是用于调制校正后的颜色以生成增强图像的新颖颜色调制(COMO)模块。

  3. 广泛的实验证明,论文的网络具有轻量化的特点,并且在流行的基准测试中表现优于现有的图像增强方法。

Proposed Method


  论文的方法受到两点观察的启发。首先,与欠曝光像素相比,过曝光像素倾向于具有反向分布偏移,这表明有必要分别捕捉和修正这样的色彩偏移。其次,由于绝大多数(如果不是全部)像素都受到过曝光或欠曝光的影响,因此有必要创建伪正常曝光信息,以指导过曝光或欠曝光像素色彩偏移的估计。基于这两点观察,我们提出了一种新的网络,其中包括两个新模块:新的色彩偏移估计(COSE)模块和新的色彩调制(COMO)模块,用于增强具有过曝光或欠曝光的图像。

Network Overview

  给定一个具有过曝光和欠曝光的输入图像 Ix∈R3×H×W

标签:香港城市大学,CSEC,SOTA,卷积,偏移,模块,图像,曝光,色彩
From: https://www.cnblogs.com/sexintercourse/p/18384140

相关文章

  • CSEC:香港城市大学提出SOTA曝光矫正算法 | CVPR 2024
    在光照条件不佳下捕获的图像可能同时包含过曝和欠曝。目前的方法主要集中在调整图像亮度上,这可能会加剧欠曝区域的色调失真,并且无法恢复过曝区域的准确颜色。论文提出通过学习估计和校正这种色调偏移,来增强既有过曝又有欠曝的图像。先通过基于UNet的网络推导输入图像的增亮和变暗......
  • SAM 2最新应用落地!牛津大学团队发布Medical SAM 2,刷新医学图像分割SOTA榜
    2023年4月,Meta公司发布了SegmentAnythingModel(SAM),号称能够「分割一切」,犹如一颗重磅炸弹震荡了整个计算机视觉领域,甚至被很多人看作是颠覆传统CV任务的研究。时隔1年多,Meta再度发布里程碑式更新——SAM2能够为静态图像和动态视频内容提供实时、可提示的对......
  • 勇夺三项SOTA!北航&爱诗科技联合发布灵活高效可控视频生成方法TrackGo!
    论文链接:https://arxiv.org/pdf/2408.11475项目链接:https://zhtjtcz.github.io/TrackGo-Page/★亮点直击本文引入了一种新颖的运动可控视频生成方法,称为TrackGo。该方法为用户提供了一种灵活的运动控制机制,通过结合masks和箭头,实现了在复杂场景中的精确操控,包......
  • SOTA、生成/判别模型
    SOTA模型"SOTA"是"StateoftheArt"的缩写,翻译成中文是“最先进的”,“尖端技术”或“行业领先”。在科技和研究领域,当提到某个产品、技术或模型是“SOTA”,意味着它代表了当前该领域最高的成就水平,通常是性能最优或技术最新的。在深度学习和机器学习领域,一个被称为SOTA的......
  • BLOS-BEV:导航地图助力BEV分割实现200米超远感知新SOTA
    BLOS-BEV:导航地图助力BEV分割实现200米超远感知新SOTA早期,由于感知算法模型的感知能力还比较有限,在城市中的自动驾驶车辆通常都需要依赖高精地图(High-Definition,HDMap)来提供丰富和精确的道路信息,比如道路的拓扑结构,停止线,车道线曲率等相关路况信息。但由于高精地图的采集和......
  • 深度学习领域的名词解释:SOTA、端到端模型、泛化、RLHF、涌现 ..
    SOTA(State-of-the-Art)在深度学习领域,SOTA指的是“当前最高技术水平”或“最佳实践”。它用来形容在特定任务或领域中性能最优的模型或方法。随着研究进展,SOTA会不断被新的研究成果所超越。 非端到端模型非端到端模型指的是模型架构中包含多个分离的组件或步骤,每个......
  • 多模态大模型+时间序列创新方案,刷新SOTA
    传统时间序列无法有效捕捉数据中复杂的非线性关系,导致在处理具有复杂动力学特性的系统时效果不佳。为解决此问题,研究者提出了多模态+时间序列。 时间序列数据与多模态数据的结合预测模型是一种新兴的数据分析方法,它结合了时间序列分析和多模态学习的技术,通过整合不同类型的数......
  • 超越所有SOTA达11%!媲美全监督方法 | UC伯克利开源UnSAM
    文章链接:https://arxiv.org/pdf/2406.20081github链接:https://github.com/frank-xwang/UnSAMSAM代表了计算机视觉领域,特别是图像分割领域的重大进步。对于需要详细分析和理解复杂视觉场景(如自动驾驶、医学成像和环境监控)的应用特别有价值。SAM的今天和大家一起学习的......
  • 发布会后苹果股价创历史新高;商汤 Embedding 模型拿下 SOTA丨 RTE 开发者日报 Vol.223
       开发者朋友们大家好: 这里是「RTE开发者日报」,每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享RTE(Real-TimeEngagement)领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「有看点的会议」,但内容仅代表编......
  • YOLOv9改进 | 一文带你了解全新的SOTA模型YOLOv9(论文阅读笔记,效果完爆YOLOv8)
    https://snu77.blog.csdn.net/article/details/136230391 官方论文地址:官方论文地址点击即可跳转官方代码地址:官方代码地址点击即可跳转    图1.在MSCOCO数据集上实时对象检测器的比较。基于GELAN和PGI的对象检测方法在对象检测性能方面超越了所有以前的从头开始训练......