首页 > 编程语言 >算法工程师应当了解哪些算法?标准很乱啊

算法工程师应当了解哪些算法?标准很乱啊

时间:2024-08-06 12:49:44浏览次数:14  
标签:Sort Search Algorithm 工程师 很乱 算法 Algorithms data Finds

Here is a more strictly categorized list of algorithms, with brief explanations for each category:

1. Sorting Algorithms

  • Quick Sort: Efficient sorting by partitioning arrays around a pivot.
  • Merge Sort: Divide-and-conquer sorting that merges sorted subarrays.
  • Heap Sort: Uses a binary heap to repeatedly extract the maximum element.

2. Search Algorithms

  • Binary Search: Efficiently finds an item in a sorted list by dividing the search space.
  • Depth-First Search (DFS): Explores as far as possible along each branch before backtracking.
  • Breadth-First Search (BFS): Explores all neighbors at the present depth before moving on to the next depth level.

3. Dynamic Programming Algorithms

  • Knapsack Problem: Optimizes item selection to maximize value without exceeding weight.
  • Longest Common Subsequence (LCS): Finds the longest subsequence common to two sequences.
  • Fibonacci Sequence: Calculates Fibonacci numbers efficiently using dynamic programming.

4. Graph Algorithms

  • Dijkstra’s Algorithm: Finds shortest paths in weighted graphs.
  • Bellman-Ford Algorithm: Computes shortest paths accommodating negative weights.
  • Kruskal’s Algorithm: Finds a minimum spanning tree by adding the smallest edges.

5. Greedy Algorithms

  • Huffman Coding: Compresses data by creating a prefix-free binary tree.
  • Prim’s Algorithm: Builds a minimum spanning tree by adding the nearest vertex.
  • Activity Selection: Selects the maximum number of non-overlapping activities.

6. Divide and Conquer Algorithms

  • Merge Sort: Recursively divides and merges arrays.
  • Quick Sort: Recursively partitions arrays around a pivot.
  • Strassen’s Algorithm: Efficiently multiplies large matrices.

7. Backtracking Algorithms

  • N-Queens Problem: Places N queens on an NxN board without conflicts.
  • Sudoku Solver: Fills Sudoku grids by ensuring no conflicts arise.
  • Hamiltonian Path: Finds a path visiting each vertex exactly once.

8. Machine Learning Algorithms

  • Linear Regression: Models the relationship between variables.
  • Decision Trees: Tree-like models for classification and regression.
  • K-Means Clustering: Partitions data into k clusters by minimizing variance.

9. String Algorithms

  • KMP Algorithm: Efficient string searching by using pattern information.
  • Rabin-Karp Algorithm: Searches for patterns using hashing.
  • Longest Palindromic Substring: Finds the longest palindromic substring.

10. Computational Geometry Algorithms

  • Convex Hull: Finds the smallest convex polygon containing all points.
  • Line Intersection: Detects intersections between line segments.
  • Voronoi Diagram: Partitions space based on distance to a set of points.

11. Mathematical Algorithms

  • Euclidean Algorithm: Finds the greatest common divisor (GCD) of two numbers.
  • Sieve of Eratosthenes: Finds all prime numbers up to a specified integer.
  • Fast Fourier Transform (FFT): Computes the discrete Fourier transform and its inverse.

12. Cryptographic Algorithms

  • RSA Algorithm: Public key encryption and decryption.
  • AES Algorithm: Symmetric encryption for secure data transmission.
  • SHA-256 Algorithm: Hashing algorithm for data integrity and security.

13. Optimization Algorithms

  • Gradient Descent: Optimizes functions by iteratively moving towards the steepest descent.
  • Simulated Annealing: Probabilistically optimizes to avoid local minima.
  • Genetic Algorithm: Uses natural selection principles to find optimal solutions.

14. Numerical Algorithms

  • Newton-Raphson Method: Finds successively better approximations to the roots of a real-valued function.
  • Gauss-Seidel Method: Iteratively solves linear systems of equations.
  • Runge-Kutta Methods: Solves ordinary differential equations (ODEs).

15. Data Structure Algorithms

  • Union-Find: Efficiently manages a partition of a set into disjoint subsets.
  • AVL Tree: Self-balancing binary search tree.
  • Hashing: Maps data to fixed-size values for efficient lookup.

This structured categorization covers a broad spectrum of algorithms, ensuring familiarity with diverse problem-solving techniques in algorithm engineering.

标签:Sort,Search,Algorithm,工程师,很乱,算法,Algorithms,data,Finds
From: https://www.cnblogs.com/augustone/p/18344931

相关文章

  • 动量优化算法:加速机器学习模型训练的秘密武器【动量】
    在机器学习和深度学习的训练过程中,优化算法扮演着至关重要的角色。动量优化算法是一种强大的技术,它能够加速模型训练,并帮助我们更快地找到最优解。这篇博客将详细介绍动量优化算法,力求让每一位读者都能轻松理解它的原理和优势。什么是动量优化算法?动量(Momentum)来源于物理......
  • 操作系统—调度算法,文件系统,设备管理,网络系统学习心得
    1.调度算法1.1进程调度算法1.2 内存页面置换算法1.3磁盘调度算法2. 文件系统2.1虚拟文件系统 2.2文件的使用 2.3文件的存储 2.4空闲空间管理2.5文件系统的结构2.6目录的存储2.7软链接和硬链接硬链接:同一个文件的两种路径......
  • mmpose-----人体骨骼关键点算法实现(姿态估计)
    MMPose:是一个基于PyTorch的开源的姿态估计工具箱,支持各种主流的人体姿态估计(2D多人姿态估计、2DHand姿态估计、133个KeyPoints的人体姿态估计、3D人体网格恢复)。(mmpose中包含很多个姿态估计算法,看都看不过来,主要讲述几个最新的top,简单操作,即学即用,跑一下不同的api就有不一样......
  • 从0开始的算法(数据结构和算法)基础(一)
        当我们学会算数开始,算法就无处不在,买菜的时候18元的菜,手上就20元和三张1块的,大多数的人都会全给然后找5块吧。它们是计算机科学的核心,在数字时代更是如此,是解决问题的关键,一个好的算法工程师,到哪去都是很吃香的,对于一个普通程序猿来说,能够掌握算法(不是知道,不会用),但算法......
  • 从0开始的算法(数据结构和算法)基础(二)
    算法效率的评估    评估算法效率的好坏主要涉及到算法的时间复杂度(TimeComplexity)、空间复杂度(SpaceComplexity)以及在实际应用中的运行性能。曾经调侃中文压缩包事件[1],白话、成语、文言文,大多数时候我们明意思白时间和知识量是递增的,时间增长和我们学习的文言文长短有......
  • 【中项】系统集成项目管理工程师-第10章 项目整合管理-10.2制订项目管理计划
    前言:系统集成项目管理工程师专业,现分享一些教材知识点。觉得文章还不错的喜欢点赞收藏的同时帮忙点点关注。     软考同样是国家人社部和工信部组织的国家级考试,全称为“全国计算机与软件专业技术资格(水平)考试”,目前涵盖了计算机软件、计算机网络、计算机应用技术......
  • 「代码随想录算法训练营」第三十天 | 动态规划 part3
    46.携带研究材料(0-1背包问题)题目链接:https://kamacoder.com/problempage.php?pid=1046文章讲解:https://programmercarl.com/背包理论基础01背包-1.html视频讲解:https://www.bilibili.com/video/BV1cg411g7Y6/题目状态:看题解过思路:创建一个二维的dp数组,用来进行动态规划,其......
  • 面试题 .NET Core 开发工程师
    在面试.NETCore高级开发工程师时,通常会涉及多个方面的问题,以评估候选人在不同领域的深度和广度。以下是一些常见的面试题目分类及示例问题:###基础知识1.**.NETCore与.NETFramework的区别?**-请解释.NETCore和.NETFramework的主要区别,以及在什么情况下选择使用......
  • 基于springboot的协同过滤算法的个性化音乐推荐系统(源码+Lw+文档+讲解等)
    博主介绍:✌十余年IT大项目实战经验、在某机构培训学员上千名、专注于本行业领域✌技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫+大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战项目。主要内容:系统功能设计、开题报告......
  • MATLAB在算法处理上的作用
    MATLAB在算法处理上的作用引言MATLAB(MatrixLaboratory)是由MathWorks公司开发的一种高性能语言及其交互环境,广泛应用于数学计算、算法开发、数据分析、仿真建模等领域。其强大的计算能力、丰富的工具箱和高效的可视化功能使其在算法处理方面表现出色。本文将详细探讨MATLAB在......