本文涉及知识点
LeetCode2812. 找出最安全路径
给你一个下标从 0 开始、大小为 n x n 的二维矩阵 grid ,其中 (r, c) 表示:
如果 grid[r][c] = 1 ,则表示一个存在小偷的单元格
如果 grid[r][c] = 0 ,则表示一个空单元格
你最开始位于单元格 (0, 0) 。在一步移动中,你可以移动到矩阵中的任一相邻单元格,包括存在小偷的单元格。
矩阵中路径的 安全系数 定义为:从路径中任一单元格到矩阵中任一小偷所在单元格的 最小 曼哈顿距离。
返回所有通向单元格 (n - 1, n - 1) 的路径中的 最大安全系数 。
单元格 (r, c) 的某个 相邻 单元格,是指在矩阵中存在的 (r, c + 1)、(r, c - 1)、(r + 1, c) 和 (r - 1, c) 之一。
两个单元格 (a, b) 和 (x, y) 之间的 曼哈顿距离 等于 | a - x | + | b - y | ,其中 |val| 表示 val 的绝对值。
示例 1:
输入:grid = [[1,0,0],[0,0,0],[0,0,1]]
输出:0
解释:从 (0, 0) 到 (n - 1, n - 1) 的每条路径都经过存在小偷的单元格 (0, 0) 和 (n - 1, n - 1) 。
示例 2:
输入:grid = [[0,0,1],[0,0,0],[0,0,0]]
输出:2
解释:
上图所示路径的安全系数为 2:
- 该路径上距离小偷所在单元格(0,2)最近的单元格是(0,0)。它们之间的曼哈顿距离为 | 0 - 0 | + | 0 - 2 | = 2 。
可以证明,不存在安全系数更高的其他路径。
示例 3:
输入:grid = [[0,0,0,1],[0,0,0,0],[0,0,0,0],[1,0,0,0]]
输出:2
解释:
上图所示路径的安全系数为 2:
- 该路径上距离小偷所在单元格(0,3)最近的单元格是(1,2)。它们之间的曼哈顿距离为 | 0 - 1 | + | 3 - 2 | = 2 。
- 该路径上距离小偷所在单元格(3,0)最近的单元格是(3,2)。它们之间的曼哈顿距离为 | 3 - 3 | + | 0 - 2 | = 2 。
可以证明,不存在安全系数更高的其他路径。
提示:
1 <= grid.length == n <= 400
grid[i].length == n
grid[i][j] 为 0 或 1
grid 至少存在一个小偷
二分查找
一,BFS出各单格距离小偷的位置(层次)leve。
二,二分查找。Check(mid) 是否存在安全系数为mid或更大的路径。随着mid从0到leve[0][0],Check的返回值逐步由true,变成false。我们寻找最后一个true。Check函数的大致步骤:
a,连通距离小偷大于等与mid的单格。
b,看右下角的层次是否大于等于0。
代码
第一版(超时)
class CGrid {
public:
CGrid(int rCount, int cCount) :m_r(rCount), m_c(cCount) {}
vector<vector<pair<int, int>>> NeiBo(std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext, int iConnect = 4)
{
vector<vector<pair<int, int>>> vNeiBo(m_r * m_c);
auto Move = [&](int preR, int preC, int r, int c)
{
if ((r < 0) || (r >= m_r))
{
return;
}
if ((c < 0) || (c >= m_c))
{
return;
}
if (funVilidCur(preR, preC) && funVilidNext(r, c))
{
vNeiBo[Mask(preR, preC)].emplace_back(r, c);
}
};
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
for (int k = 0; k < iConnect; k++)
{
Move(r, c, r + s_Moves[k][0], c + s_Moves[k][1]);
}
}
}
return vNeiBo;
}
void EnumGrid(std::function<void(int, int)> call)
{
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
call(r, c);
}
}
}
vector<pair<int, int>> GetPos(std::function<bool(int, int)> fun) {
vector<pair<int, int>> ret;
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (fun(r, c)) {
ret.emplace_back(r, c);
}
}
}
return ret;
}
inline int Mask(int r, int c) { return m_c * r + c; }
const int m_r, m_c;
const inline static int s_Moves[][2] = { {1,0},{-1,0},{0,1},{0,-1},{1,1},{1,-1},{-1,1},{-1,-1} };
};
class CBFSLeve {
public :
static vector<int> Leve(const vector<vector<int>>& neiBo, vector<int> start) {
vector<int> leves(neiBo.size(), -1);
for (const auto& s : start) {
leves[s] = 0;
}
for (int i = 0; i < start.size(); i++) {
for (const auto& next : neiBo[start[i]]) {
if (-1 != leves[next]) { continue; }
leves[next] = leves[start[i]]+1;
start.emplace_back(next);
}
}
return leves;
}
static vector<vector<int>> Leve(CGrid& grid, vector<pair<int, int>> start, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext, int iConnect = 4 ) {
auto neiBo = grid.NeiBo(funVilidCur, funVilidCur, iConnect);
vector<vector<int>> leves(grid.m_r, vector<int>(grid.m_c, -1));
for (const auto& [r,c] : start) {
leves[r][c] = 0;
}
for (int i = 0; i < start.size(); i++) {
const int iMask = grid.Mask(start[i].first, start[i].second);
for (const auto& [r1,c1] : neiBo[iMask]) {
if (-1 != leves[r1][c1]) { continue; }
leves[r1][c1] = leves[start[i].first][start[i].second] + 1;
start.emplace_back(r1,c1);
}
}
return leves;
}
};
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex):m_iMin(iMinIndex),m_iMax(iMaxIndex) {}
template<class _Pr>
INDEX_TYPE FindFrist( _Pr pr)
{
auto left = m_iMin - 1;
auto rightInclue = m_iMax;
while (rightInclue - left > 1)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd( _Pr pr)
{
int leftInclude = m_iMin;
int right = m_iMax + 1;
while (right - leftInclude > 1)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax;
};
class Solution {
public:
int maximumSafenessFactor(vector<vector<int>>& grid) {
CGrid ng(grid.size(),grid[0].size());
auto start = ng.GetPos([&](int r, int c) {return grid[r][c] == 1; });
auto vilid = [&](int r, int c) {return true; };
auto leve = CBFSLeve::Leve(ng, start,vilid, vilid);
auto Check = [&](int mid) {
auto vilid1 = [&](int r, int c) {return leve[r][c] >= mid; };
auto leve1 = CBFSLeve::Leve(ng, { {0,0 } }, vilid1, vilid1);
return leve1.back().back() >= 0;
};
CBinarySearch<int> bs(0, leve[0][0]);
return bs.FindEnd(Check);
}
};
第二版
中间过程,求临接表浪费很多时间,省略后,速度提高几倍。就可以过了。许多单格和起点不连通,无需计算。
class CGrid {
public:
CGrid(int rCount, int cCount) :m_r(rCount), m_c(cCount) {}
template<class Fun1,class Fun2>
vector<vector<pair<int, int>>> NeiBo(Fun1 funVilidCur, Fun2 funVilidNext, int iConnect = 4)
{
vector<vector<pair<int, int>>> vNeiBo(m_r * m_c);
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (!funVilidCur(r, c))continue;
auto& v = vNeiBo[Mask(r, c)];
if ((r > 0)&& funVilidNext(r-1, c)) {
v.emplace_back(r-1, c);
}
if ((c > 0) && funVilidNext(r , c - 1)) {
v.emplace_back(r, c - 1);
}
if ((r+1 < m_r ) && funVilidNext(r + 1, c)) {
v.emplace_back(r + 1, c);
}
if ((c+1 <m_c ) && funVilidNext(r, c + 1)) {
v.emplace_back(r, c + 1);
}
}
}
return vNeiBo;
}
void EnumGrid(std::function<void(int, int)> call)
{
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
call(r, c);
}
}
}
vector<pair<int, int>> GetPos(std::function<bool(int, int)> fun) {
vector<pair<int, int>> ret;
for (int r = 0; r < m_r; r++)
{
for (int c = 0; c < m_c; c++)
{
if (fun(r, c)) {
ret.emplace_back(r, c);
}
}
}
return ret;
}
inline int Mask(int r, int c) { return m_c * r + c; }
const int m_r, m_c;
const inline static int s_Moves[][2] = { {1,0},{-1,0},{0,1},{0,-1},{1,1},{1,-1},{-1,1},{-1,-1} };
};
class CBFSLeve {
public :
static vector<int> Leve(const vector<vector<int>>& neiBo, vector<int> start) {
vector<int> leves(neiBo.size(), -1);
for (const auto& s : start) {
leves[s] = 0;
}
for (int i = 0; i < start.size(); i++) {
for (const auto& next : neiBo[start[i]]) {
if (-1 != leves[next]) { continue; }
leves[next] = leves[start[i]]+1;
start.emplace_back(next);
}
}
return leves;
}
static vector<vector<int>> Dis(CGrid& grid, vector<pair<int, int>> start, std::function<bool(int, int)> funVilidCur, std::function<bool(int, int)> funVilidNext, const int& iConnect = 4 ) {
static short dir[8][2] = { {0, 1}, {1, 0}, {-1, 0},{ 0, -1},{1,1},{1,-1},{-1,1},{-1,-1} };
vector<vector<int>> vDis(grid.m_r, vector<int>(grid.m_c, -1));
for (const auto& [r,c] : start) {
vDis[r][c] = 0;
}
for (int i = 0; i < start.size(); i++) {
const auto [r,c] = start[i];
if (!funVilidCur(r, c)) { continue; }
for (int k = 0; k < iConnect; k++) {
const int r1 = r + dir[k][0];
const int c1 = c + dir[k][1];
if ((r1 < 0) || (r1 >= grid.m_r) || (c1 < 0) || (c1 >= grid.m_c)) { continue; }
if (funVilidNext(r1, c1)&&(-1 == vDis[r1][c1])) {
start.emplace_back(r1, c1);
vDis[r1][c1]= vDis[r][c] + 1;
}
}
}
return vDis;
}
};
template<class INDEX_TYPE>
class CBinarySearch
{
public:
CBinarySearch(INDEX_TYPE iMinIndex, INDEX_TYPE iMaxIndex):m_iMin(iMinIndex),m_iMax(iMaxIndex) {}
template<class _Pr>
INDEX_TYPE FindFrist( _Pr pr)
{
auto left = m_iMin - 1;
auto rightInclue = m_iMax;
while (rightInclue - left > 1)
{
const auto mid = left + (rightInclue - left) / 2;
if (pr(mid))
{
rightInclue = mid;
}
else
{
left = mid;
}
}
return rightInclue;
}
template<class _Pr>
INDEX_TYPE FindEnd( _Pr pr)
{
int leftInclude = m_iMin;
int right = m_iMax + 1;
while (right - leftInclude > 1)
{
const auto mid = leftInclude + (right - leftInclude) / 2;
if (pr(mid))
{
leftInclude = mid;
}
else
{
right = mid;
}
}
return leftInclude;
}
protected:
const INDEX_TYPE m_iMin, m_iMax;
};
class Solution {
public:
int maximumSafenessFactor(vector<vector<int>>& grid) {
CGrid ng(grid.size(),grid[0].size());
auto start = ng.GetPos([&](int r, int c) {return grid[r][c] == 1; });
auto vilid = [&](int r, int c) {return true; };
auto dis = CBFSLeve::Dis(ng, start,vilid, vilid);
auto Check = [&](int mid) {
auto vilid1 = [&](int r, int c) {return dis[r][c] >= mid; };
auto dis2 = CBFSLeve::Dis(ng, { {0,0} }, vilid1, vilid1);
return dis2.back().back() >= 0;
};
CBinarySearch<int> bs(0, min(dis[0][0],dis.back().back()));
return bs.FindEnd(Check);
}
};
单元测试
vector<vector<int>> grid;
TEST_METHOD(TestMethod1)
{
grid = { {1} };
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(0, res);
}
TEST_METHOD(TestMethod15)
{
grid = { {1,0,0},{0,0,0},{0,0,1} };
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(0, res);
}
TEST_METHOD(TestMethod16)
{
grid = { {0,0,1},{0,0,0},{0,0,0} };
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(2, res);
}
TEST_METHOD(TestMethod17)
{
grid = { {0,0,0,1},{0,0,0,0},{0,0,0,0},{1,0,0,0} };
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(2, res);
}
TEST_METHOD(TestMethod18)
{
grid.assign(400, vector<int>(400));
grid[0][0] = 1;
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(0, res);
}
TEST_METHOD(TestMethod19)
{
grid.assign(400, vector<int>(400));
grid.back().back() = 1;
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(0, res);
}
TEST_METHOD(TestMethod20)
{
grid.assign(400, vector<int>(400));
grid[0].back() = 1;
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(399, res);
}
TEST_METHOD(TestMethod21)
{
grid.assign(400, vector<int>(400));
grid.back()[0] = 1;
auto res = Solution().maximumSafenessFactor(grid);
AssertEx(399, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。