首页 > 编程语言 >11 个接口性能优化技巧(下)【送源码】

11 个接口性能优化技巧(下)【送源码】

时间:2024-07-25 22:25:27浏览次数:19  
标签:11 缓存 redis 接口 查询 源码 加锁 数据

 7. 锁粒度

在某些业务场景中,为了防止多个线程并发修改某个共享数据,造成数据异常。

为了解决并发场景下,多个线程同时修改数据,造成数据不一致的情况。通常情况下,我们会:加锁

但如果锁加得不好,导致锁的粒度太粗,也会非常影响接口性能。

7.1 synchronized

在java中提供了synchronized关键字给我们的代码加锁。

通常有两种写法:在方法上加锁 和 在代码块上加锁

先看看如何在方法上加锁:

public synchronized doSave(String fileUrl) {
    mkdir();
    uploadFile(fileUrl);
    sendMessage(fileUrl);
}

这里加锁的目的是为了防止并发的情况下,创建了相同的目录,第二次会创建失败,影响业务功能。

但这种直接在方法上加锁,锁的粒度有点粗。因为doSave方法中的上传文件和发消息方法,是不需要加锁的。只有创建目录方法,才需要加锁。

我们都知道文件上传操作是非常耗时的,如果将整个方法加锁,那么需要等到整个方法执行完之后才能释放锁。显然,这会导致该方法的性能很差,变得得不偿失。

这时,我们可以改成在代码块上加锁了,具体代码如下:

public void doSave(String path,String fileUrl) {
    synchronized(this) {
      if(!exists(path)) {
          mkdir(path);
       }
    }
    uploadFile(fileUrl);
    sendMessage(fileUrl);
}

这样改造之后,锁的粒度一下子变小了,只有并发创建目录功能才加了锁。而创建目录是一个非常快的操作,即使加锁对接口的性能影响也不大。

最重要的是,其他的上传文件和发送消息功能,任然可以并发执行。

当然,这种做在单机版的服务中,是没有问题的。但现在部署的生产环境,为了保证服务的稳定性,一般情况下,同一个服务会被部署在多个节点中。如果哪天挂了一个节点,其他的节点服务任然可用。

多节点部署避免了因为某个节点挂了,导致服务不可用的情况。同时也能分摊整个系统的流量,避免系统压力过大。

同时它也带来了新的问题:synchronized只能保证一个节点加锁是有效的,但如果有多个节点如何加锁呢?

答:这就需要使用:分布式锁了。目前主流的分布式锁包括:redis分布式锁、zookeeper分布式锁 和 数据库分布式锁。

由于zookeeper分布式锁的性能不太好,真实业务场景用的不多,这里先不讲。

下面聊一下redis分布式锁。

7.2 redis分布式锁

在分布式系统中,由于redis分布式锁相对于更简单和高效,成为了分布式锁的首先,被我们用到了很多实际业务场景当中。

使用redis分布式锁的伪代码如下:

public void doSave(String path,String fileUrl) {
  try {
    String result = jedis.set(lockKey, requestId, "NX", "PX", expireTime);
    if ("OK".equals(result)) {
      if(!exists(path)) {
         mkdir(path);
         uploadFile(fileUrl);
         sendMessage(fileUrl);
      }
      return true;
    }
  } finally{
      unlock(lockKey,requestId);
  }  
  return false;
}

跟之前使用synchronized关键字加锁时一样,这里锁的范围也太大了,换句话说就是锁的粒度太粗,这样会导致整个方法的执行效率很低。

其实只有创建目录的时候,才需要加分布式锁,其余代码根本不用加锁。

于是,我们需要优化一下代码:

public void doSave(String path,String fileUrl) {
   if(this.tryLock()) {
      mkdir(path);
   }
   uploadFile(fileUrl);
   sendMessage(fileUrl);
}

private boolean tryLock() {
    try {
    String result = jedis.set(lockKey, requestId, "NX", "PX", expireTime);
    if ("OK".equals(result)) {
      return true;
    }
  } finally{
      unlock(lockKey,requestId);
  }  
  return false;
}

上面代码将加锁的范围缩小了,只有创建目录时才加了锁。这样看似简单的优化之后,接口性能能提升很多。说不定,会有意外的惊喜喔。哈哈哈。

redis分布式锁虽说好用,但它在使用时,有很多注意的细节,隐藏了很多坑,如果稍不注意很容易踩中。

7.3 数据库分布式锁

mysql数据库中主要有三种锁:

  • 表锁:加锁快,不会出现死锁。但锁定粒度大,发生锁冲突的概率最高,并发度最低。

  • 行锁:加锁慢,会出现死锁。但锁定粒度最小,发生锁冲突的概率最低,并发度也最高。

  • 间隙锁:开销和加锁时间界于表锁和行锁之间。它会出现死锁,锁定粒度界于表锁和行锁之间,并发度一般。

并发度越高,意味着接口性能越好。

所以数据库锁的优化方向是:

优先使用行锁,其次使用间隙锁,再其次使用表锁

赶紧看看,你用对了没?

8.分页处理

有时候我会调用某个接口批量查询数据,比如:通过用户id批量查询出用户信息,然后给这些用户送积分。

但如果你一次性查询的用户数量太多了,比如一次查询2000个用户的数据。参数中传入了2000个用户的id,远程调用接口,会发现该用户查询接口经常超时。

调用代码如下:

List<User> users = remoteCallUser(ids);

众所周知,调用接口从数据库获取数据,是需要经过网络传输的。如果数据量太大,无论是获取数据的速度,还是网络传输受限于带宽,都会导致耗时时间比较长。

那么,这种情况要如何优化呢?

答:分页处理

将一次获取所有的数据的请求,改成分多次获取,每次只获取一部分用户的数据,最后进行合并和汇总。

其实,处理这个问题,要分为两种场景:同步调用 和 异步调用

8.1 同步调用

如果在job中需要获取2000个用户的信息,它要求只要能正确获取到数据就好,对获取数据的总耗时要求不太高。

但对每一次远程接口调用的耗时有要求,不能大于500ms,不然会有邮件预警。

这时,我们可以同步分页调用批量查询用户信息接口。

具体示例代码如下:

List<List<Long>> allIds = Lists.partition(ids,200);

for(List<Long> batchIds:allIds) {
   List<User> users = remoteCallUser(batchIds);
}

代码中我用的googleguava工具中的Lists.partition方法,用它来做分页简直太好用了,不然要巴拉巴拉写一大堆分页的代码。

8.2 异步调用

如果是在某个接口中需要获取2000个用户的信息,它考虑的就需要更多一些。

除了需要考虑远程调用接口的耗时之外,还需要考虑该接口本身的总耗时,也不能超时500ms。

这时候用上面的同步分页请求远程接口,肯定是行不通的。

那么,只能使用异步调用了。

代码如下:

List<List<Long>> allIds = Lists.partition(ids,200);

final List<User> result = Lists.newArrayList();
allIds.stream().forEach((batchIds) -> {
   CompletableFuture.supplyAsync(() -> {
        result.addAll(remoteCallUser(batchIds));
        return Boolean.TRUE;
    }, executor);
})

使用CompletableFuture类,多个线程异步调用远程接口,最后汇总结果统一返回。

9.加缓存

解决接口性能问题,加缓存是一个非常高效的方法。

但不能为了缓存而缓存,还是要看具体的业务场景。毕竟加了缓存,会导致接口的复杂度增加,它会带来数据不一致问题。

在有些并发量比较低的场景中,比如用户下单,可以不用加缓存。

还有些场景,比如在商城首页显示商品分类的地方,假设这里的分类是调用接口获取到的数据,但页面暂时没有做静态化。

如果查询分类树的接口没有使用缓存,而直接从数据库查询数据,性能会非常差。

那么如何使用缓存呢?

9.1 redis缓存

通常情况下,我们使用最多的缓存可能是:redismemcached

但对于java应用来说,绝大多数都是使用的redis,所以接下来我们以redis为例。

由于在关系型数据库,比如:mysql中,菜单是有上下级关系的。某个四级分类是某个三级分类的子分类,这个三级分类,又是某个二级分类的子分类,而这个二级分类,又是某个一级分类的子分类。

这种存储结构决定了,想一次性查出这个分类树,并非是一件非常容易的事情。这就需要使用程序递归查询了,如果分类多的话,这个递归是比较耗时的。

所以,如果每次都直接从数据库中查询分类树的数据,是一个非常耗时的操作。

这时我们可以使用缓存,大部分情况,接口都直接从缓存中获取数据。操作redis可以使用成熟的框架,比如:jedis和redisson等。

用jedis伪代码如下:

String json = jedis.get(key);
if(StringUtils.isNotEmpty(json)) {
   CategoryTree categoryTree = JsonUtil.toObject(json);
   return categoryTree;
}
return queryCategoryTreeFromDb();

先从redis中根据某个key查询是否有菜单数据,如果有则转换成对象,直接返回。如果redis中没有查到菜单数据,则再从数据库中查询菜单数据,有则返回。

此外,我们还需要有个job每隔一段时间,从数据库中查询菜单数据,更新到redis当中,这样以后每次都能直接从redis中获取菜单的数据,而无需访问数据库了。

图片

这样改造之后,能快速的提升性能。

但这样做性能提升不是最佳的,还有其他的方案,我们一起看看下面的内容。

9.2 二级缓存

上面的方案是基于redis缓存的,虽说redis访问速度很快。但毕竟是一个远程调用,而且菜单树的数据很多,在网络传输的过程中,是有些耗时的。

有没有办法,不经过请求远程,就能直接获取到数据呢?

答:使用二级缓存,即基于内存的缓存。

除了自己手写的内存缓存之后,目前使用比较多的内存缓存框架有:guava、Ehcache、caffine等。

我们在这里以caffeine为例,它是spring官方推荐的。

第一步,引入caffeine的相关jar包

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-cache</artifactId>
</dependency>
<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
    <version>2.6.0</version>
</dependency>

第二步,配置CacheManager,开启EnableCaching

@Configuration
@EnableCaching
public class CacheConfig {
    @Bean
    public CacheManager cacheManager(){
        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
        //Caffeine配置
        Caffeine<Object, Object> caffeine = Caffeine.newBuilder()
                //最后一次写入后经过固定时间过期
                .expireAfterWrite(10, TimeUnit.SECONDS)
                //缓存的最大条数
                .maximumSize(1000);
        cacheManager.setCaffeine(caffeine);
        return cacheManager;
    }
}

第三步,使用Cacheable注解获取数据

@Service
public class CategoryService {
   
   @Cacheable(value = "category", key = "#categoryKey")
   public CategoryModel getCategory(String categoryKey) {
      String json = jedis.get(categoryKey);
      if(StringUtils.isNotEmpty(json)) {
         CategoryTree categoryTree = JsonUtil.toObject(json);
         return categoryTree;
      }
      return queryCategoryTreeFromDb();
   }
}

调用categoryService.getCategory()方法时,先从caffine缓存中获取数据,如果能够获取到数据,则直接返回该数据,不进入方法体。

如果不能获取到数据,则再从redis中查一次数据。如果查询到了,则返回数据,并且放入caffine中。

如果还是没有查到数据,则直接从数据库中获取到数据,然后放到caffine缓存中。

具体流程图如下:

图片

该方案的性能更好,但有个缺点就是,如果数据更新了,不能及时刷新缓存。此外,如果有多台服务器节点,可能存在各个节点上数据不一样的情况。

由此可见,二级缓存给我们带来性能提升的同时,也带来了数据不一致的问题。使用二级缓存一定要结合实际的业务场景,并非所有的业务场景都适用。

但上面我列举的分类场景,是适合使用二级缓存的。因为它属于用户不敏感数据,即使出现了稍微有点数据不一致也没有关系,用户有可能都没有察觉出来。

10. 分库分表

有时候,接口性能受限的不是别的,而是数据库。

当系统发展到一定的阶段,用户并发量大,会有大量的数据库请求,需要占用大量的数据库连接,同时会带来磁盘IO的性能瓶颈问题。

此外,随着用户数量越来越多,产生的数据也越来越多,一张表有可能存不下。由于数据量太大,sql语句查询数据时,即使走了索引也会非常耗时。

这时该怎么办呢?

答:需要做分库分表

如下图所示:

图片

图中将用户库拆分成了三个库,每个库都包含了四张用户表。

如果有用户请求过来的时候,先根据用户id路由到其中一个用户库,然后再定位到某张表。

路由的算法挺多的:

  • 根据id取模,比如:id=7,有4张表,则7%4=3,模为3,路由到用户表3。

  • 给id指定一个区间范围,比如:id的值是0-10万,则数据存在用户表0,id的值是10-20万,则数据存在用户表1。

  • 一致性hash算法

分库分表主要有两个方向:垂直水平

说实话垂直方向(即业务方向)更简单。

在水平方向(即数据方向)上,分库和分表的作用,其实是有区别的,不能混为一谈。

  • 分库:是为了解决数据库连接资源不足问题,和磁盘IO的性能瓶颈问题。

  • 分表:是为了解决单表数据量太大,sql语句查询数据时,即使走了索引也非常耗时问题。此外还可以解决消耗cpu资源问题。

  • 分库分表:可以解决 数据库连接资源不足、磁盘IO的性能瓶颈、检索数据耗时 和 消耗cpu资源等问题。

如果在有些业务场景中,用户并发量很大,但是需要保存的数据量很少,这时可以只分库,不分表。

如果在有些业务场景中,用户并发量不大,但是需要保存的数量很多,这时可以只分表,不分库。

如果在有些业务场景中,用户并发量大,并且需要保存的数量也很多时,可以分库分表。

11. 辅助功能

优化接口性能问题,除了上面提到的这些常用方法之外,还需要配合使用一些辅助功能,因为它们真的可以帮我们提升查找问题的效率。

11.1 开启慢查询日志

通常情况下,为了定位sql的性能瓶颈,我们需要开启mysql的慢查询日志。把超过指定时间的sql语句,单独记录下来,方面以后分析和定位问题。

开启慢查询日志需要重点关注三个参数:

  • slow_query_log 慢查询开关

  • slow_query_log_file 慢查询日志存放的路径

  • long_query_time 超过多少秒才会记录日志

通过mysql的set命令可以设置:

set global slow_query_log='ON'; 
set global slow_query_log_file='/usr/local/mysql/data/slow.log';
set global long_query_time=2;

设置完之后,如果某条sql的执行时间超过了2秒,会被自动记录到slow.log文件中。

当然也可以直接修改配置文件my.cnf

[mysqld]
slow_query_log = ON
slow_query_log_file = /usr/local/mysql/data/slow.log
long_query_time = 2

但这种方式需要重启mysql服务。

很多公司每天早上都会发一封慢查询日志的邮件,开发人员根据这些信息优化sql。

11.2 加监控

为了出现sql问题时,能够让我们及时发现,我们需要对系统做监控

目前业界使用比较多的开源监控系统是:Prometheus

它提供了 监控 和 预警 的功能。

架构图如下:

图片

我们可以用它监控如下信息:

  • 接口响应时间

  • 调用第三方服务耗时

  • 慢查询sql耗时

  • cpu使用情况

  • 内存使用情况

  • 磁盘使用情况

  • 数据库使用情况

等等。。。

它的界面大概长这样子:

图片

可以看到mysql当前qps,活跃线程数,连接数,缓存池的大小等信息。

如果发现数据量连接池占用太多,对接口的性能肯定会有影响。

这时可能是代码中开启了连接忘了关,或者并发量太大了导致的,需要做进一步排查和系统优化。

截图中只是它一小部分功能,如果你想了解更多功能,可以访问Prometheus的官网:https://prometheus.io/

11.3 链路跟踪

有时候某个接口涉及的逻辑很多,比如:查数据库、查redis、远程调用接口,发mq消息,执行业务代码等等。

该接口一次请求的链路很长,如果逐一排查,需要花费大量的时间,这时候,我们已经没法用传统的办法定位问题了。

有没有办法解决这问题呢?

用分布式链路跟踪系统:skywalking

架构图如下:

图片

通过skywalking定位性能问题:

图片

在skywalking中可以通过traceId(全局唯一的id),串联一个接口请求的完整链路。可以看到整个接口的耗时,调用的远程服务的耗时,访问数据库或者redis的耗时等等,功能非常强大。

之前没有这个功能的时候,为了定位线上接口性能问题,我们还需要在代码中加日志,手动打印出链路中各个环节的耗时情况,然后再逐一排查。

如果你用过skywalking排查接口性能问题,不自觉的会爱上它的。如果你想了解更多功能,可以访问skywalking的官网:https://skywalking.apache.org/

——EOF——

福利:

扫码回复【酒店】可免费领取酒店管理系统源码

 

标签:11,缓存,redis,接口,查询,源码,加锁,数据
From: https://blog.csdn.net/java_121388/article/details/140647235

相关文章