Java与协程
在Java时代的早期,Java语言抽象出来隐藏了各种操作系统线程差异性的统一线程接口,这曾经是它区别于其他编程语言的一大优势。在此基础上,涌现过无数多线程的应用与框架,譬如在网页访问时,HTTP请求可以直接与Servlet API中的一条处理线程绑定在一起,以“一对一服务”的方式处理由浏览器发来的信息。语言与框架已经自动屏蔽了相当多同步和并发的复杂性,对于普通开发者而言,几乎不需要专门针对多线程进行学习训练就能完成一般的并发任务。时至今日,这种便捷的并发编程方式和同步的机制依然在有效地运作着,但是在某些场景下,却也已经显现出了疲态。
内核线程的局限
笔者可以通过一个具体场景来解释目前Java线程面临的困境。今天对Web应用的服务要求,不论是在请求数量上还是在复杂度上,与十多年前相比已不可同日而语,这一方面是源于业务量的增长,另一方面来自于为了应对业务复杂化而不断进行的服务细分。现代B/S系统中一次对外部业务请求的响应,往往需要分布在不同机器上的大量服务共同协作来实现,这种服务细分的架构在减少单个服务复杂度、增加复用性的同时,也不可避免地增加了服务的数量,缩短了留给每个服务的响应时间。这要求每一个服务都必须在极短的时间内完成计算,这样组合多个服务的总耗时才不会太长;也要求每一个服务提供者都要能同时处理数量更庞大的请求,这样才不会出现请求由于某个服务被阻塞而出现等待。
Java目前的并发编程机制就与上述架构趋势产生了一些矛盾,1:1的内核线程模型是如今Java虚拟机线程实现的主流选择,但是这种映射到操作系统上的线程天然的缺陷是切换、调度成本高昂,系统能容纳的线程数量也很有限。以前处理一个请求可以允许花费很长时间在单体应用中,具有这种线程切换的成本也是无伤大雅的,但现在在每个请求本身的执行时间变得很短、数量变得很多的前提下,用户线程切换的开销甚至可能会接近用于计算本身的开销,这就会造成严重的浪费。
传统的Java Web服务器的线程池的容量通常在几十个到两百之间,当程序员把数以百万计的请求往线程池里面灌时,系统即使能处理得过来,但其中的切换损耗也是相当可观的。现实的需求在迫使Java去研究新的解决方案,同大家又开始怀念以前绿色线程的种种好处,绿色线程已随着Classic虚拟机的消失而被尘封到历史之中,它还会有重现天日的一天吗?
协程的复苏
经过前面对不同线程实现方式的铺垫介绍,我们已经明白了各种线程实现方式的优缺点,所以多数读者看到笔者写“因为映射到了系统的内核线程中,所以切换调度成本会比较高昂”时并不会觉得有什么问题,但相信还是有一部分治学特别严谨的读者会提问:为什么内核线程调度切换起来成本就要更高?
内核线程的调度成本主要来自于用户态与核心态之间的状态转换,而这两种状态转换的开销主要来自于响应中断、保护和恢复执行现场的成本。请读者试想以下场景,假设发生了这样一次线程切换:
线程A -> 系统中断 -> 线程B
处理器要去执行线程A的程序代码时,并不是仅有代码程序就能跑得起来,程序是数据与代码的组合体,代码执行时还必须要有上下文数据的支撑。而这里说的“上下文”,以程序员的角度来看,是方法调用过程中的各种局部的变量与资源;以线程的角度来看,是方法的调用栈中存储的各类信息;而以操作系统和硬件的角度来看,则是存储在内存、缓存和寄存器中的一个个具体数值。物理硬件的各种存储设备和寄存器是被操作系统内所有线程共享的资源,当中断发生,从线程A切换到线程B去执行之前,操作系统首先要把线程A的上下文数据妥善保管好,然后把寄存器、内存分页等恢复到线程B挂起时候的状态,这样线程B被重新激活后才能仿佛从来没有被挂起过。这种保护和恢复现场的工作,免不了涉及一系列数据在各种寄存器、缓存中的来回拷贝,当然不可能是一种轻量级的操作。
如果说内核线程的切换开销是来自于保护和恢复现场的成本,那如果改为采用用户线程,这部分开销就能够省略掉吗?答案是“不能”。但是,一旦把保护、恢复现场及调度的工作从操作系统交到程序员手上,那我们就可以打开脑洞,通过玩出很多新的花样来缩减这些开销。
有一些古老的操作系统(譬如DOS)是单人单工作业形式的,天生就不支持多线程,自然也不会有多个调用栈这样的基础设施。而早在那样的蛮荒时代,就已经出现了今天被称为栈纠缠(Stack Twine)的、由用户自己模拟多线程、自己保护恢复现场的工作模式。其大致的原理是通过在内存里划出一片额外空间来模拟调用栈,只要其他“线程”中方法压栈、退栈时遵守规则,不破坏这片空间即可,这样多段代码执行时就会像相互缠绕着一样,非常形象。
到后来,操作系统开始提供多线程的支持,靠应用自己模拟多线程的做法自然是变少了许多,但也并没有完全消失,而是演化为用户线程继续存在。由于最初多数的用户线程是被设计成协同式调度(Cooperative Scheduling)的,所以它有了一个别名——“协程”(Coroutine)。又由于这时候的协程会完整地做调用栈的保护、恢复工作,所以今天也被称为“有栈协程”(Stackfull Coroutine),起这样的名字是为了便于跟后来的“无栈协程”(Stackless Coroutine)区分开。无栈协程不是本节的主角,不过还是可以简单提一下它的典型应用,即各种语言中的await、async、yield这类关键字。无栈协程本质上是一种有限状态机,状态保存在闭包里,自然比有栈协程恢复调用栈要轻量得多,但功能也相对更有限。
协程的主要优势是轻量,无论是有栈协程还是无栈协程,都要比传统内核线程要轻量得多。如果进行量化的话,那么如果不显式设置-Xss或-XX:ThreadStackSize,则在64位Linux上HotSpot的线程栈容量默认是1MB,此外内核数据结构(Kernel Data Structures)还会额外消耗16KB内存。与之相对的,一个协程的栈通常在几百个字节到几KB之间,所以Java虚拟机里线程池容量达到两百就已经不算小了,而很多支持协程的应用中,同时并存的协程数量可数以十万计。
协程当然也有它的局限,需要在应用层面实现的内容(调用栈、调度器这些)特别多,这个缺点就不赘述了。除此之外,协程在最初,甚至在今天很多语言和框架中会被设计成协同式调度,这样在语言运行平台或者框架上的调度器就可以做得非常简单。不过有不少资料上显示,既然取了“协程”这样的名字,它们之间就一定以协同调度的方式工作。笔者并没有查证到这种“规定”的出处,只能说这种提法在今天太过狭隘了,非协同式、可自定义调度的协程的例子并不少见,而协同调度的优点与不足在12.4.2节已经介绍过。
具体到Java语言,还会有一些别的限制,譬如HotSpot这样的虚拟机,Java调用栈跟本地调用栈是做在一起的。如果在协程中调用了本地方法,还能否正常切换协程而不影响整个线程?另外,如果协程中遇传统的线程同步措施会怎样?譬如Kotlin提供的协程实现,一旦遭遇synchronize关键字,那挂起来的仍将是整个线程。
Java的解决方案
对于有栈协程,有一种特例实现名为纤程(Fiber),这个词最早是来自微软公司,后来微软还推
出过系统层面的纤程包来方便应用做现场保存、恢复和纤程调度。OpenJDK在2018年创建了Loom项
目,这是Java用来应对本节开篇所列场景的官方解决方案,根据目前公开的信息,如无意外,日后该
项目为Java语言引入的、与现在线程模型平行的新并发编程机制中应该也会采用“纤程”这个名字,不
过这显然跟微软是没有任何关系的。从Oracle官方对“什么是纤程”的解释里可以看出,它就是一种典型
的有栈协程,如图12-11所示。图12-7 JVMLS 2018大会上Oracle对纤程的介绍
Loom项目背后的意图是重新提供对用户线程的支持,但与过去的绿色线程不同,这些新功能不是
为了取代当前基于操作系统的线程实现,而是会有两个并发编程模型在Java虚拟机中并存,可以在程
序中同时使用。新模型有意地保持了与目前线程模型相似的API设计,它们甚至可以拥有一个共同的
基类,这样现有的代码就不需要为了使用纤程而进行过多改动,甚至不需要知道背后采用了哪个并发
编程模型。Loom团队在JVMLS 2018大会上公布了他们对Jetty基于纤程改造后的测试结果,同样在
5000QPS的压力下,以容量为400的线程池的传统模式和每个请求配以一个纤程的新并发处理模式进行
对比,前者的请求响应延迟在10000至20000毫秒之间,而后者的延迟普遍在200毫秒以下,具体结果如
图12-8所示。
图12-8 Jetty在新并发模型下的压力测试
在新并发模型下,一段使用纤程并发的代码会被分为两部分——执行过程(Continuation)和调度
器(Scheduler)。执行过程主要用于维护执行现场,保护、恢复上下文状态,而调度器则负责编排所
有要执行的代码的顺序。将调度程序与执行过程分离的好处是,用户可以选择自行控制其中的一个或
者多个,而且Java中现有的调度器也可以被直接重用。事实上,Loom中默认的调度器就是原来已存在
的用于任务分解的Fork/Join池(JDK 7中加入的ForkJoinPool)。
Loom项目目前仍然在进行当中,还没有明确的发布日期,上面笔者介绍的内容日后都有被改动的
可能。如果读者现在就想尝试协程,那可以在项目中使用Quasar协程库[1],这是一个不依赖Java虚拟
机的独立实现的协程库。不依赖虚拟机来实现协程是完全可能的,Kotlin语言的协程就已经证明了这
一点。Quasar的实现原理是字节码注入,在字节码层面对当前被调用函数中的所有局部变量进行保存
和恢复。这种不依赖Java虚拟机的现场保护虽然能够工作,但很影响性能,对即时编译器的干扰也非
常大,而且必须要求用户手动标注每一个函数是否会在协程上下文被调用,这些都是未来Loom项目要
解决的问题。
[1] 如同JDK 5把Doug Lea的dl.util.concurrent项目引入,成为java.util.concurrent包,JDK 9时把Attila Szegedi的dynalink项目引入,成为jdk.dynalink模块。Loom项目的领导者Ron Pressler就是Quasar的作者
标签:Java,纤程,虚拟机,调度,线程,协程 From: https://www.cnblogs.com/DCFV/p/18302011